Alloy Design Basics and Advanced

GactSage[™]

Contents

Topics	Slide #
General approach for alloy design using FactSage	<u>4</u>
Overview of FactSage alloy databases	<u>13</u>
Application examples	
EX1. Binary phase diagram: Mg-AI (how to read the phase diagram)	<u>17</u>
EX2. Target (Transition, Formation, Precipitation): Mg-Al	<u>19</u>
EX3. Equilibrium phase fraction / phase fraction vs temperature diagram: Mg-Al	<u>25</u>
EX4. Simple as-cast microstructure simulation / Scheil cooling calculation: Mg-Al	<u>30</u>
EX5. I option (miscibility gap): AI-Zn phase diagram	<u>32</u>
EX6. Isothermal Ternary phase diagram: Mg-Al-Zn	<u>34</u>
EX7. Projection calculation (Liquidus projection): Mg-AI-Zn	<u>36</u>
EX8. Scheil cooling calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)	<u>38</u>
EX9. Equilibrium calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)	<u>40</u>
EX10. Complex phase diagram: AZ31 – Sr rectangular phase diagram	<u>42</u>
EX11. Complex phase diagram: AZ31 – Sr – Ca rectangular isothermal section	<u>44</u>

Contents

Topics	Slide #
EX12. Complex phase diagrams: Mg-Al-Zn + 1% Sr triangle isothermal section Mg-Al-Zn + 1% Sr rectangular isothermal section	<u>46</u>
EX13. Metastable phase: Fe-C binary phase diagram with/without C (Fe ₃ C)	<u>50</u>
EX14. J option (3 possible miscibility gap): Fe-Nb-Ti-C-N system Carbide and Nitride precipitations in micro-alloyed steels	<u>52</u>
EX15-1. Phase diagram PO2 – T (X): oxidation of pure Fe, Fe-Cr, Fe-1%Mn-1%Si	<u>64</u>
EX16. <a> option: Simple counter-cross inter-diffusion calculation <a>AI-Mg // <1-A>Mg-AI-Zn	<u>69</u>
EX17. Oxidation of AHSS in tunnel furnace: Dew point control, primary/secondary oxidation	<u>72</u>
EX18. Interfacial oxidation: remelting/oxidation of Zn coating	<u>88</u>
EX19. Composition target: carburization and decarburization of steel	<u>95</u>
EX20. Open calculation: refining of B and P for high purity Si production	<u>99</u>
EX21. Heat balance (Δ H): heat evolution during fluxing, alloying, heating, casting	<u>106</u>
EX22. Thermodynamic property calculations: G, H, S, iso-activity lines in ternary system	<u>112</u>
EX23. Solidus projection: Mg-Al-Zn system	<u>120</u>
EX24. Evolution of non-metallic inclusion during the solidification	<u>122</u>
EX25. Paraequilibrium: A3 temperature of Steel; Rapid solidification (Amorphous formation)	<u>127</u>

All materials processes involve "Thermodynamics" and "Kinetics".

Thermodynamics (Equilibrium) tells where we go. Kinetics tells how fast we can go.

FactSage can provide Thermodynamic calculations for:

- Multicomponent (< 48 elements) Chemical reaction equilibria
- Phase diagrams up to 8 component systems (*FactSage 70: even more than 8 components are allowed*)
- Thermodynamic properties such as heat balance, G, H, S, etc.

Alloy Design Concept using FactSage Calculations

Material Processing and FactSage

Process	What can we do with FactSage			
Extraction / Refining / Recycling	Gas/Slag/Matte/Salt/Metal/Refractory reactions			
Casting	Scheil cooling calculation (as-cast microstructure)			
Casting	Solidification software			
	Multicomponent equilibrium calculations			
Annealing / Homogenization	Secondary phase precipitation			
Tiomogonization	Solidification software			
TMP / Forming				
Final treatment: Oxidation / Corrosion / Surface treatment	Oxidation phase diagram, E-pH diagram, Gas corrosion reactions			
Thermeduremie	All kinds of thermodynamic properties:			
properties	Heat balance, G, H, S, activity, partial pressure of gases, etc			

Alloy design (I): Phase diagram calculation

to find out final target composition

Mg - AI - 1%Zn - 0.3%Mn

GactSage"

Alloy Design 7

Alloy design (II): Estimating of as-cast microstructure to find out

whether solidification can be reasonable.

Scheil cooling calculation of AZ31 alloy

Alloy Design 9

Scheil cooling calculation: as cast microstructure

Solidification path calculation: AZ31

Scheil Cooling calculation

Scheil cooling calculations tell us the solidification path

- Primary phase, precipitation, and eutectic reaction.
- Dendrite boundary (eutectics, segregation)
- -> Estimation of as-cast microstructure

JactSage[™]

change of composition In dendrite & boundary

Alloy Design 11

Alloy design (III): Calculate the final target microstructure AZ31

FTlite database

FTlite Database for FactSage 8.3

The FTlite Database is designed for thermodynamic and phase equilibrium calculations involving Al alloys, Mg alloys and Ti alloys using the FactSage 8.0 Thermochemical Software Package (and later versions). The FTlite Database can also be used to perform calculations involving mixtures of Li-Na-K-Mg-Ca-Sr-Ba with several other elements.

	AI Alloys
Ag, Al, As, Au, B, Ba, Be, Bi, C, Ca, Ce, C	Co, Cr, Cu, Dy, Er, Eu, Fe, <u>Ga</u> , Gd, Ge, H, <u>Hf</u> , Ho, In, K,
La, <mark>Li</mark> , Lu, Mg , Mn , <u>Mo</u> , <u>N</u> , Na, <u>Nb</u> , No	d, Ni, <u>o</u> , <u>P</u> , Pb, Pr, Pt, Sb, Sc, <mark>Si</mark> , Sm, Sn, Sr, <u>Ta</u> , Tb, Ti,
Tm,	V, <u>w</u> , Y, Yb, Zn, Zr
	Mg Alloys
Ag, Al, B, Ba, Be, Bi, C, Ca, Ce, Co, Cr	, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, H, Ho, In, K, La, Li,
Lu, <mark>Mg</mark> , Mn, Na, Nb , Nd, Ni, <u>o</u> , Pb, I	Pr, Pt, Sb, Sc, <mark>Si</mark> , Sm, Sn, Sr, Tb, Ti, Tm, V, Y, Yb, <mark>Zn</mark> ,
	Zr
	Ti Alloys
Ag, Al, B, Ba, C, Ca, Ce, Co, Cr, Cu, Dy,	<u>Er, Eu</u> , Fe, <u>Ga</u> , <u>Gd</u> , H, <u>Ho</u> , <u>K</u> , <u>La</u> , <u>Li</u> , <u>Lu</u> , Mg, Mn, Mo, N,
<u>Na</u> , Nb , <u>Nd</u> , Ni , <u>O</u> , <u>Pr</u> , <u>Sc</u> , Si , <u>S</u> i	<u>m</u> , Sn, Sr, Ta, <u>Tb</u> , <mark>Ti</mark> , <u>Tm</u> , V, W, <u>Y</u> , <u>Yb</u> , Zn, Zr
	Color codes
Red : Al or Mg Blue : Major alloying elements (full optimisa minor alloying elements, Al-Mg-Xx ter	ations of binary systems with AI , Mg and Ti and with several nary systems evaluated (good for AI+Mg-rich regions), several
quaternary systems included); Green : Minor alloying elements (full optim <u>Black</u> : Optimized for the M-Zz system and	Please look at "Documentation" to updates of FTlite database in Fact

FSStel database

The elements included in the FactSage FSstel steel database are:

Al, B, Bi, C, Ca, Co, Cr, Cu, Fe, H, Hf, Mg, Mn, Mo, N, O, Nb, Ni, P, Pb, S, Sb, Si, Sn, Ta, Ti, V, W, Zn, Zr, RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)

The FactSage FSstel steel database is based on relevant steel sub-systems from the old SGTE Solution database, but now incorporates updates of those systems as well as new published assessments. "Tramp elements" have also been included to allow calculations relating to recycling and removal of unwanted impurities to be performed.

The database contains **379** completely assessed **61** partially assessed binary alloy systems, together with approximately **158** ternary and **28** quaternary systems for which assessed parameters are available for phases of practical relevance. It contains **186** solution phases and **1014** stoichiometric compounds.

The liquid phase is described by the **Modified Quasichemical Model** (**MQM**) since FSStel 7.3 version. With this model, many previous optimizations with the random mixing model and new optimizations with the MQM can be combined to give a more accurate description of the liquid solution in binary, ternary and higher-order systems. The thermodynamic behaviors of O, N, S, and P in liquid steel are well described by this model. For the accurate description of the deoxidation of Fe-Ca and Fe-Mg liquid solutions, CaO and MgO associate species as proposed by Jung, Degterov and Pelton [1], have been incorporated in the liquid phase.

Updates in FactSage 8.3 version

In this update, numerous binary **Cr-RE** (RE = Rare Earth elements) system were newly added as part of our continue effort to put RE in steel database. Many **binary systems containing Ca, Mg, Nb and Zn** were newly added or updated for more accurate chemical reaction calculations in the refining process of super alloys and Zn galvanizing process of high alloyed steels. **Binary systems containing Sc** were also largely updated. These include 47 new binary systems, and several new ternary systems. 2 new solution phases and 57 new compounds are included in 8.3 version.

Please look at "Documentation" to check new updates of FSStel database in FactSage 83.

- FSCopp: Copper alloy development (all binary Cu-X systems
- FSupsi: High purity Si database for solar cell grade Si production
- FSnobl: Noble alloy database for Ag, Au, Ir, Os, Pd, Pt, Rh, Ru refining
- SGnobl: Similar to FSnobl
- SGsold: Solder alloy database

• SGTE 2014, 2017, 2020: developed by SGTE (<u>www.sgte.org</u>): Applicable to all general alloy system. But less accurate than other dedicated databases for specific region.

APPLICATION EXAMPLES

Alloy Design 16

EX1. Binary phase diagram: Mg-AI binary system

Alloy Design 17

JactSage[™]

Alloy Design 18

(a)Transitions (EX2-1):

do calculation between initial and final temperature and find all phase transition between them

EX2-1. Transition calculation

	(1) Select the compositions(2) Select "<i>transitions</i>" instead of <i>"normal</i>"
Quantity(g) Species Phase T(C) P(total)** Stream# Data 0.91 Mg 1 + 0.09 Al	last system - □ × neters Help T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
Initial Conditions Next >> FactSage 8.0 Compound: 1/23 databases	Image: secies: Solution phases Full Name Custom Solutions Details Details <thdetails< th=""></thdetails<>
Final Conditions	Legend I mmiscible 6 All Immiscible 6 + · selected species: 30 Select Image: solutions: 13 Image: solutions: 13 <td< td=""></td<>

Range of temperature: "*initial final interval*" Calculate Initial (0 °C) to final (700°C) temperature with interval of 10 °C

FactSage™

Alloy Design 20

Alloy Design 21

JactSage™

ᡇ Equilib - Re	esults 377.22 C (page 39/7	(4)	×	
<u>O</u> utput <u>E</u> dit	Show Pages Final Cond	litions		
D 🗃 🔛	J	T(C) P(atm) Energy(J) Quantity(g) Vol(litre	e) 👖 📑 💽 🕄	a
250 C 260	0 C 270 C 280 C 200 C		250.01	
460 C 470 C	c 476.56 c	Phase transition h	nannens at this t	emperature
360 C 370 C	- 377.22 C - 389 C			Sinperatare
	~		FactSage 8.0	
(gram) 0.9	91 Mg + 0.09 Al =			
1.0000	gram HCP-A3#1			
(1.0000	0 gram, 2.0388E-02 m	ol)		
	(377.22 C, 1 atm,	a=1.0000)		
	(9.0000 wt.%	Al2Va Mg2Va)		
	, 51.000 W6.8	**9= * * *		
	System component	Amount/mol Amount/gram	Mole fraction Mass fraction 9 0000E-02 9 0000E-02	
	Mg	3.7441E-02 0.91000	0.91820 0.91000	
+ 0	Gram CBCC-A12#	1		
+ 0	gram CBCC-A12#	2	Although	the amount of Gamma phase is ze
	(377.22 C, 1 atm,	a=1.0000)	the estivit	$\frac{1}{2}$ $\frac{1}{2}$ talls Common phase begin
	+ 1.0638 wt.%	Mg10A124Mg24	the activity	a = 1 tens Gamma phase begin
	+ 79.379 wt.%	Mg10Mg24A124 Mg10Mg24Mg24)	form at th	nis temperature
	1 13.147 W0.0	11g1011g2411g24/		
	Site fraction of s Mg 2a+8c	ublattice constituents: 1.0000 Stoichiometry	r = 10	
	Al_24g Mg 24g	7.1830E-02 Stoichiometry 0.92817	y = 24	
	A1_24g Mg 24g	0.85239 Stoichiometry 0.14761	Y = 24	
	-			
	System component Al	Amount/mol Amount/gram 0 0	n Mole fraction Mass fractio: 0.38244 0.40740	If formed this is composition
	Mg	0 0	0.61756 0.59260	ii iormea, unis is composition
+ 0	Final Conditions			•
+ 0		T(C) P(atm)	Product H(J) 71+ calculations X	
		0 700 10 1		
	, , , , , , , , , , , , , , , , , , , ,	,	Laiculate >>	×
<			>	

EX2-2. Precipitation target calculation

🕼 Equilib - Reactants	- n x		
<u>File Edit Table Units Data Search</u> Data Evaluation <u>H</u> elp	存 Equilib - Menu: comments		– 🗆 🗙
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp		
1.2	D 🖻 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🚻 📑 🐼
Quantity(g) Species Phase T(f) [0.91 Mg Image: Species Image: Species Image: Species Image: Species T(f) + [0.09 [Al Image: Species Image: Species Image: Species T(f)	Reactants (2)	(gram) 0.91 Mg + 0.09 AI	···· <u>····</u>
	Products		
Next >> FactSage 8.0 Compound: 1/23 databases	Compound species gas ideal C real 0 aqueous 0 pure liquids 0 + pure solids 19 Species: 19 Precipitate Target FT lite-Liqu Estimate T(C): 1000	Solution phases + Base-Phase Full Name IP FTlite-Liqu Liquid T FTlite-A1 FCC-A1 I FTlite-A2 BCC-A2 I FTlite-A3 HCP-A3 I FTlite-A12 CBCC-A12 Prototype-Mn I FTlite-L12 L12 Prototype-AuCu3 + FTlite-Beta Beta Prototype-Mg28Al45 Legend I immiscible 6 P - precipitate target Show • all • selected snecies: 30	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data [paraequilibrium & Gmin edit Total Species (max 5000) 49 Total Species (max 5000) 49
automatic default estimated	value	+-selected 1 solutions: 13 Select	Total Phases (max 1500) 32
	Final Londitions		Equilibrium
		I(U) P(ātm) ▼ Product H(J) ▼ I 1	normal C normal + transitions transitions only C open
For target calculation, this			no time limit - Calculate >>
temperature should remain	blank C:\Work:	shop80\Workshop\page20.equi	

Liquid is selected as precipitation target phase (P). Then, FactSage will calculate liquidus temperature of a given composition

EX2-3. Formation target calculation

🕝 Reactants - Equilib		
File Edit Table Units Data Search Help	🗘 Menu - Equilib: Target-Formation: Mg-Al	
T(C) P(atm) Energy(J) Mass(g) Vo	File Units Parameters Help	
1.2	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	🚻 📑 🐨
Mass(g) Species Phase [0.91 [Mg	Reactants (2) (gram) 0.91 Mg + 0.09 Al	
Next >> FactSage 6.1 Compound: 1/25 databases Solution: 1/22 databases	Products Compound species gas I ideal C real 0 aqueous 0 pure liquids 0 + pure solids 15 I suppress duplicates apply 1 Formation Target 1 FTIite-Liqu Laves_C14 I FTlite-Beta Beta_AlMg Legend I immiscible 6 I immiscible 6 F ormation target Stimate T(C): 1000	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes <u>Total Species (max 1500)</u> 53 <u>Total Solutions (max 40)</u> 14
automatic default estimated	value	Default
	<a> T(C) P(atm) ✓ Product H(J) 1 1	formal C transitions O predominant C open Calculate >>
For target calculation, this	c:\FactSage\In-Ho\EquiEX2-3.DAT	
temperature should remain	blank	

Liquid is selected as formation target phase (F). Then, FactSage will calculate solidus temperature of a given composition

EX3. Variation of phase fraction with temperature (equilibrium)

🗘 Equilib - Reactants	– 🗆 X		
Eile Edit Table Units Data Search Data Evaluation Help			
T(C) P(atm) Energy(J) Quantity(g) V	'ol(litre) 👖 📑 🐺		
1.2			
Quantitu(n) Species Phase	Equilib - Menu: comments		- ×
	<u>File Units Parameters Help</u>		
+ 0.09 AI		T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	111 🖳 🔁
	Reactants (2)		
		(gram) 0.91 Mg + 0.09 Al	
	Products		
	Compound species	Solution phases	Custom Solutions
		* + Base-Phase Full Name	0 fixed activities Details
	📕 gas 💿 ideal 🔿 real 🛛 0	I FTlite-Liqu Liquid	0 ideal solutions
	aqueous 0	I FTlite-A1 FCC-A1	Pseudonyms
	pure liquids 0	I FTlite-A2 BCC-A2	apply
Next >>	+ pure solids 19	I FTlite-A3 HCP-A3	Volume data
actSage 8.0 Compound: 1/23 databases Solution: 1/23 databases		I FTlite-A12 CBCC-A12 Prototype-Mn	solids and liquids = 0
	species: 19	I FTlite-L12 L12 Prototype-AuCu3	C include molar volume data
		+ FTite-Beta Beta Prototype-Mg28AI45	and physical properties data
	Torrechtigen bereichten		🗖 paraequilibrium & Gmin 🔄 edit
	I ransitions - temperature	Legend	
	Number of	+-selected 1	Total Species (max 5000) 49
	transitions: All	species: 30 Select	Total Solutions (max 200) 13
		solutions. 13	Total Phases (max 1500) 32
	- Final Conditions	·	Fauilibrium
	<a> 	T(C) P(atm) ▼ Product H(J) ▼	normal • normal + transitions
		700 200 10 1	C transitions only C open
	10 steps 🗖 Table	51+ calculations	no time limit - Calculate >>
	- - - - - - - - - -		
I	FactSage 8.0 C:\Works	hop8U\Workshop\ex3.equi	1.

Transition calculation from 700°C to 200°C with 10°C interval

Alloy Design 26

Select all stable phases

Select stable pure liquids

Select stable pure solids

Select stable solution phases

Clear

Special care is required for the phase selection

A simple way is click "Select all stable phases" Then, FactSage will select all phases having activity = 1

<u>S</u> how	<u>S</u> elect							
#	Species	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity (ma	•
Pure	Solids							
31	Mg	0	0	0	0	0.864403	0.977341	
32	Mg	0	0	0	0	0.856503	0.966681	
33	Mg	0	0	0	0	0.560324	0.760395	
34	Mg	0	0	0	0	0.570061	0.919915	
35	Mg	0	0	0	0	a		1 (¹
36	Mg	0	0	0	• IV	lanu	al se	lection
37	Mg	0	0	0	0			
38	Al	0	0	0	0			
39	Al	0	0	0	0			
40	Al	0	0	0	0	· ·		
41	Al	0	0	0	0	in toi	r	
42	Al	0	0	0	0	ירי קי		
43	Al	0	0	0	0 66	hoo	o fro	otion ve tomporatura diagram"
44	Al	0	0	0	0	JIIdS	e lla	cuon vs. temperature diagram
45	Al	0	0	0	0			, 0
46	Al	0	0	0	0			
47	AlMg	0	0	0	0			
48	Al3Mg	0	0	0	0	الم ال		which have amount > 0 in "Dura
49	Al30Mg23	0	0	0	O A	ii pna	ases	which have amount > 0 in Pure
	SOLUTIONS							
50	GAS	0	0	0	0 A	<u>nd "S</u>	SOLL	ITIONS" should be selected
51	Ligu#1	0	4.0776E-02	0	0 0			
52	Ligu#2	0	0	0	0	0.486635		
53	A1#1	0	0	0	0	0.63085	0.806656	
54	A1#2	0	0	0	0	0.63085	0.806656	
55	A2#1	0	0	0	0	0.576269	0.832085	
56	A2#2	0	0	0	0	0.576269	0.832085	
57	A3#1	0	2.0388E-02	0	0	0.888578	1	▼
							•	
Cle	ar		play Mass source mo phase C gra pagel	e Order m C integer # C mass (max C fraction (n C activity (m	i) ax) () (ax) () () () () () () () () () (p 15 + 0 pecies and with zero mass	or species selected	

0.91 Mg + 0.09 AI

C:\Workshop80\Workshop\Equi0.res 19Dec19

Alloy Design 28

ŧ	#	Species Mole (min) Mole (max) Fraction (min) Fraction (max) /						Activity (ma 🔺
		ELEMENTS							
	64	AL_GAS	0	0	0	0	0	0	
	65	Ma GAS	0	0	0	0	0	0	
	66	Al_Liqu#1	0	3.3356E-03	0	0.244638	0	0	
	67	Mg_Liqu#1	0	3.7441E-02	0	0.918198	0	0	
1	68	Al_tiqu#2		+ +	-0	- -	- 0	- (-	
	69	Mg_Liqu#2	0	0	0	0	0	0	
	70	AL_A1#1	0	0	0	0	0	0	
	71	Mg_A1#1	0	0	0	0	0	0	
	72	AL_A1#2	0	0	0	0	0	0	
	73	Mg_A1#2	0	0	0	0	0	0	
	74	AL_A2#1	0	0	0	0	0	0	
	75	Mg_A2#1	0	0	0	0	0	0	
	76	AI_A2#2	0	0	0	0	0	0	
	77	Mg_A2#2	0	0	0	0	0	0	
	78	AL_A3#1	0	3.3356E-03	0	8.1802E-02	0	0	
	79	Mg_A3#1	0	3.7441E-02	0	0.973952	0	0	_
									•
Clear									

al variation inside of solution phases, we have to select the elements in this "ELEMENTS" section.

For example, if we want to plot the variation of Al and Mg concentrations in liquid phase with temperature, we have to select Al_Liq#1 and Mg_Liq#1.

EX4. Variation of phase fraction with temperature (Scheil cooling)

Cooling step: In most of cases, 5 degree is enough to simulate solidification process

This cooling step is not directly related to solidification rate (cooling speed)

Temperature:

- (i) starting temperature and final temperature
- (ii) starting temperature: program will automatically calculate the final solidification temperature

GactSage™

Alloy Design 31

EX5. I option (miscibility gap)

存 Phase Diagram - Menu: last syst	em		– 🗆 X
File Units Parameters Variables	: Help		
	III 📑 🕒 💌		
Components (2)	Al +	Zn	
Products			
Compound species	Solution phases		Custom Solutions
🔲 gas 💿 ideal 🔿 real 🛛 0	+ Base-Phase	Full Name Liquid	0 fixed activities0 0 ideal solutions
aqueous 0	I FTlite-A1	FCC-A1	
pure liquids 0	I FTlite-A2	BCC-A2	apply 🗖 🔄 Edit
+ pure solids 18	I FTlite-A3	HCP-A3	Volume data
species: 18	I Filite-A3"	HUP-Zn Prototype-Mg	 distante induitaries of solids and liquids = 0 include molar volume data and physical properties data
Target			📃 paraequilibrium & Gmin 🔄 edit
- none -	I - immiscible 5	Show 🖲 all 🕜 selected	T-1-10
Estimate T(K): 1000	_	species: 20	Total Species (max 5000) 38
		solutions: 10 Select	Total Solutions (max 200) 10 Total Pleases (max 1500) 20
			Total Phases (max 1500) 28
Variables			Phase Diagram
T(C) Zn/(Al+Zn)			Y
0 700 0 1			×
T(C) vs Zn/(Al+Zn)			- no time limit - Calculate >>

"I" Option: when the phase has a miscibility gap (solid state or liquid state phase separation), I option should be selected to do more accurate calculations (most cases, I option will be automatically selected).

For example, fcc phase in Al-Zn system has a solid state miscibility gap as in this example. Liquid oxide slag has a miscibility gap in the high SiO2 region.

EX6. Isothermal Ternary phase diagram: Mg-Al-Zn

🗘 Phase Diagram - Components	×	
File Edit Units Data Search Data Ev	aluation Help T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	
1-3	Components Mg Al Zri	
	 Phase Diagram - Menu: last system File Units Parameters Variables Help 	-
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	
	Components (3)	Variables: Mg-Al-Zn composition #1. vs composition #1.
	(gram) Mg + Al + Zn	Variables
	Products	X Constant V Constant V
FactSage 8.0 Compound: 1/23 databa	Compound species Solution phases gas € ideal C real I aqueous I pure liquids I pure liquids I FTite-A1 FCC-A1 I FTite-A2 BCA2 BCC-A2 I FTite-A3 I FTite-A3 I FTite-A3 I FTite-A12 CBCC-A12 Prototype-Mg	$ \begin{array}{c} a \\ c \\ d \\ d \\ c \\ B \\ C \\ X,Y \text{ steps 11} \end{array} \begin{array}{c} b \\ c \\ B \\ X,Y \text{ steps 11} \end{array} \begin{array}{c} c \\ b \\ c \\ Next \end{array} \end{array} $
	I FTite-C36 C36 Prototype-Mg∠n2	- Compositions Quantity(g)
	Target - none · - none · I - immiscible 9 Estimate T(K): 1000 I - immiscible 9 + - selected 6 species: 118 solutions: 24	I Mg + 0 Zn A-Corner II Mg + I Zn = Image: A-Corner Image: I
	Variables T(C) Mg/(Mg+Al+Zn) 400 0.1	0 Mg + 1 Al + 0 Zn C-Corner
	[A = Mg, B = Zn, C = AI]	$\frac{1}{10000000000000000000000000000000000$
	FactSage 8.0	Image: Mg + 0 AI + 1 Zn B-Corner Image: Mg + 1 AI + 1 Zn Image: Figure
		Cancel

GactSage[™]

Alloy Design 35

EX7. Projection calculation (Liquidus projection): Mg-Al-Zn

A			
Phase Diagram - Menu: comment	ts	- 🗆 X	
File Units Parameters Variables	Help		
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🎁 🖳 👘 👘	
Components (3)	(gram) Mg + Al + Zn		
Products Compound species 0 gas © ideal © real 0 aqueous 0 pure liquids 0 + pure solids 35 species: 35 Target - none - Estimate T(K): 1000 Variables T(C) Mg/(Mg+Al+Zn) Projection	Solution phases Full Name IO FTlite-Liqu Liquid I FTlite-A1 FCC-A1 I FTlite-A2 BCC-A2 I FTlite-A3 HCP-A3 I FTlite-A3'' HCP-Cn Prototype-Mg I FTlite-A12 CBCC-A12 Prototype-Mg I FTlite-A3'' HCP-Zn Prototype-MgZn2 I FTlite-C14 C14 Prototype-MgZn2 I FTlite-C36 C36 Prototype-MgNi2 Legend I Show I all C selected 0 - only plot this phase + selected 6 + - selected 6 Al/(Mg+AI+Zn) 01	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data Volume data and physical properties dat paraequilibrium & Gmin ec Virtual species: Total Species (max 200) 15 Total Solutions (max 200) 2 Total Phases (max 1500) 5 hase Diagram Projection Quivivariant California (Solutions	Step: interval of isothermal temperature liquidus lines
A = Ma, B = Zn, C = Al			Compositions Quantitu(a)
FactSage 8.0 C:\Worksho	p80\Workshop\page35.phas		#1. $\frac{1}{1}$ Mg + 0 Al + 0 Zn $\frac{A \cdot Comer}{1}$ #1. $\frac{Mg + 1}{1}$ Al + 1 Zn $\frac{A \cdot Comer}{1}$ (min)
"O" option for the target projection phase (Liquid in most of cases)			#2. $0 Mg + 1 Al + 0 Zn$ $1 Mg + 1 Al + 1 Zn$ $= \frac{C \cdot Corner}{1 (max)}$ 0 (min)
		-	#3. $\frac{0}{1}$ Mg + $\frac{0}{1}$ Al + $\frac{1}{1}$ Zn = $\frac{B \cdot Corner}{1 (max)}$ $\frac{1}{0 (min)}$
			Cancel

EX8. Scheil cooling calculation for AZ31 alloy (Mg-3AI-1Zn-0.3Mn)

🗘 Equilib - Menu: last system		_	×						
File Units Parameters Help									
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	111	🦻 🖪						
Products	(gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn		Cutput	o - Results 700 C (p Edit <u>S</u> how Pages	age 1/56) <u>F</u> inal Conditions T(C	C) P(atm) Energy(J) (Quantity(g) Vol(litre)	-	- • ×
Compound species	Solution phases Image: Solution phase Full Name IL FTite-Liqu Liquid I FTite-A1 FCC-A1	Custom Solutions 0 fixed activities 0 ideal solutions Pseudonyms	359.5 De 525 C Summary	C 357.05 C 354. 500 C 487.86 C 4 Transitions - 700 C	39 C 75 C 458.62 C 2 - 675 C 650 C	450 C 425 C 415 629.71 C 625 C	5.28 C 400 C 377 616.51 C 600 C	.56 C 375 C 575 C 550 C	Fact Sage 8 0 A
pure liquids 0 + pure solids 49 species: 49 Scheil-Gulliver coolina FTlite-Liqu Options Cooling step : 25 T-auto:	I FTlite-A2 BCC-A2 I FTlite-A3 HCP-A3 I FTlite-A12 CBCC-A12 Prototype-Mn I FTlite-A13 CUB-A13 Prototype-Mn I FTlite-B2_d BCC-B2dIBCC-A2 Legend I FTlite-B2_d I - immiscible 12 I Show ● all ● selected L- Scheil cooLing account 259	apply Volume data assume molar vo solids and liquid: c include molar vo and physical pro apply back diffus <u>Total Species (max 5</u>	Edi (gram) lume 100 = 0 (1) ume + 0 perti	95.7 Mg + 3 0.00 gram I 00.00 gram 1 (700 C, 1 (3.0000 + 95.700 + 0.30000 + 1.0000	Al + Zn + Siquid#1 S54 mol) Siquid#2 atm, a=1. wt.\$ Al wt.\$ Mg wt.\$ Mn wt.\$ Zn)	0.3 Mn =	[Accumula	ated Scheil]	Factbage 6.0
Guantity(g): 0 Final Conditions <a> ID steps Table	+ · selected 10 solutions: 34 Select T(C) P(atm) ▼ Product H(J) ▼ 700 100 1 Scheil-Gulliver cooling · T(start) = 700, T(stop) = 100	Total Solutions (max Total Phases (max 1) quilibrium normal C norma transitions only C no time limit - Cal	200) 00) + tr. Čop + 0 + 0 sula	System con Zn Al Mg gram F (700 C, 1 (0.92266	aponent HCP-A3#1 HCP-A3#2 atm, a=0. wt.% A12Va +M-2V	Amount/mol 1.5295E-02 5.4607E-03 0.11119 3.9375 92264)	Amount/gram 1.0000 0.30000 3.0000 95.700	Mole fraction 3.7586E-03 1.3419E-03 2.7323E-02 0.96758	Mass fractio 1.0000E-02 3.0000E-03 3.0000E-02 0.95700
FactSage 8.0 C:\Works	hop80\Workshop\page20.equi		+ 0 + 0	+ 0.25767 + 9.5722E- gram F (700 C, 1 (0.78607	wt.% Mn2Va -02 wt.% Zn2Va HCP-Zn#1 HCP-Zn#2 atm, a=0. wt.% Al	90926)			
			+ 0	+ 99.098 + 0.11584 gram E (700 C, 1 Final Condition	wt.% Mg wt.% Zn) SCC-A2#1 atm, a=0. ns 	80869) T(C) 700 100	P(atm)	Product H(J)	eactivated for Scheil cooling

95.7 Mg + 3 Al + Zn + 0.3 Mn

C:\Workshop80\Workshop\Equi0.res 19Dec19

Alloy Design 39

EX9. Equilibrium calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)

a wints Parameters Help b wints T(C) P(atm) Energy(U) Quantity(g) Vol(litre) Image: Construction of the second of
Image: Compound species Solution phases Full Name Output Edit gas C ideal C real 0 Solution phases Image: Compound species Image: Compou
Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn Products (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 3 Al + Zn + 0.3 Mn (gram) 95.7 Mg + 0.1 Al + 20.4 Mn + 20.
Image: gram j95.7 Mg + 3 Al + Zn + 0.3 Mn Products Compound species gas G ideal C real 0 aqueous pas G ideal C real 0 aqueous pure liquids 0 pure liquids 0 pure liquids 0 in FTlike-A3 H FTlike-A3 HCP-A3 HCP-Zn Prototype-Mn 1 FTlike-A3 I FTlike-A3 HCP-Zn Prototype-Mn 2000 C read in FTlike-A3 I FTlike-A3 HCP-Zn Prototype-Mn 2000 C read in FTlike-A3 I FTlike-A3 HCP-Zn Prototype-Mn 2000 C read in FTlike-A3 I FTlike-A3 HCP-Zn Prototype-Mn 2000 C read in Physical properties data and physical properties data and physical properties data and physical properties data in the Phases final Solutions (add Solut
Products Compound species: Solution phases gas G ideal C real 0 gas G ideal C real 0 index control in aqueous: 0 in FTikeA1 FCCA1 pure iquids 0 in FTikeA3 HCPA3 in FTikeA12 CBCCA2 Volume data G assume molar volumes of solds and liquids = 0 in FTikeA12 CBCCA12 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA12 CBCCA12 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA12 CBCCA12 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA13 CUBAT3 Prototype-Mn in FTikeA13 Selected in transitions: Paraequilibrium & Gmin _edit inal Conditions Selected inal Conditions Selected inal Conditions Interviewed inal Conditions Selected inal Conditions Interviewed inal Conditions
Compound species Solution phases gas © ideal C real 0 aqueous 0 pure liquids 0 pure solids 49 species: 49 I FTlike-A1 FCC-A1 Pseudonyms edativities aqueous 0 i FTlike-A2 BCC-A2 Volume data
gas € ideal C real 0 aqueous 0 pure liquids 0 + pure solids 49 I FTIke-A1 FCC-A1 PC-A1 FTIke-A2 BCC-A2 I FTIke-A3 HCP-A3 I FTIke-A3 HCP-A3 I FTIke-A12 CBCC-A12 Prototype-Mn I FTIke-A12 CBCC-A12 Prototype-Mn I FTIke-A13 CUBA13 Prototype-Mn I FTIke-A13 CUBA13 Prototype-Mn I FTIke-A2 BCC-A2 ✓ Volume data and physical properties data I FTIke-A13 CUBA13 Prototype-Mn I FTIke-A2 BCC-A2 ✓ Volume data and physical properties data I FTIke-A2 BCC-A2 ✓ Volume data and physical properties data I FTIke-A3 BCC-B2dBCC-A2 ✓ Volume data and physical properties data I FTIke-B2 d BCC-B2dBCC-A2 ✓ I FTIke-B2 d BCC-B2dBCC-A2 ✓ I FTIke-B2 d BCC-B2dBCC-A2 ✓ I total Species: 258 solutions: 34 Select I total Species fmax 1500 307 I total Solutions (max 200) 34 I total Phases (max 1500) 83 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I HCP-A3 2.0452E+00 4.9878E+01 I I HCP-A3 2.0452E+00 4.9878E+01
gas (° ideal C real 0 aqueous 0 pure liquids 0 il FTlite-A1 FCCA1 pure liquids 0 il FTlite-A2 BCC-A2 BCC-A2 0 read solutions Pseudonyms 1 control (10, 11, 10, 11, 10, 10, 10, 10, 10, 10,
aqueous 0 1 FTIRe-A1 FCC-A1 pure liquids 0 1 FTIRe-A2 BCC-A2 + pure solids 49 1 FTIRe-A3 HCP-A3 species: 49 1 FTIRe-A12 CBC-A12 Prototype-Mn 1 FTIRe-A12 CBC-A12 Prototype-Mn - sesume molar volume data and physical properties data and physical properties data - and physical properties data - and physical properties data and physical properties data - and physical properties data - and physical properties data and physical properties data - and physical properties data - and physical properties data - include molar volumes of transitions: - and physical properties data - and physical properties data - include molar volumes of transitions: - and physical properties data - and physical properties data - include molar volumes of transitions: - and physical properties data - and physical properties data - include molar volumes of transitions: - and physical properties data - and physical properties data - include molar volumes of transitions: - and physical properties data - and physical properties data - include molar volumes of transiti
Image: pure inquices 0 Image: pure inquices 0 Image: pure inquices 0 1 Filte-A2 BUL-A2
Image: species: 49 Image: species: 40 File-A13 CUB-A13 Prototype-Mn Image: species: 50 50 50002+00 20
species: 49 I Filte-A12 CBC-A12 Prototype-Mn I Filte-A13 COMPONENTS: I Filte-A13 CUB-A13 Prototype-Mn I Filte-A13 I CUB-A13 Prototype-Mn I Filte-A13 I CUB-A13 Prototype-Mn I Filte-A13 I CUB-A13 Prototype-Mn I Filte-A13 I CUB-A13 Prototype-Mn I Filte-A13 Number of transitions: I Filte-A13 CUB-A13 Prototype-Mn I Filte-A13 I CuB-A13 Prototype-Mn I Filte-A13 I CuB-A13 Prototype-Mn I I I I MCP-A3 I CuB-A14 AMOUNT/gram = 9.5700E+01 A1 AMOUNT/gram = 3.0000E+00 Mn Image: All I I MCP-A3 I CuB-A14 Select I CuB-A14 I I MCP-A3 I CuB-A14 I I MCP-A3 I I MCP-A3
species: 49 I FTite-A13 CUB-A13 Prototype-Mn I FTite-B2_d BCC-B2d/BCC-A2 Transitions · temperature Legend I · immiscible 12 Show • all • selected + · selected 10 Species: 258 solutions: 34 Solutions: 1 HCD Product H(I) Select Constructions 1 HCD Product H(I) Select Solutions: 1 HCD Product H(I) Select Select Select Solutions: 34 Solutions: 34 Select Select Solutions: 34 Solutions: 34 Solutions: 34 Solutions: 34 Solutions: 34 Solutions: 34 Solutions:
I FTite-B2_d BCC-B2d/BCCA2 Transitions · temperature Legend I · immiscible 12 I · immiscible 12 ✓ Show • all • selected species: 258 solutions: 34 Select Total Solutions: (Max 200) 34 Total Solutions (max 200) 34 I · temperature of final disappearance of Liquid) Constructions 2.0452E+00 Yinal Conditions Constructions (A) (B)
Transitions · temperature Legend I · immiscible 12 Show (• all O selected species: 258 select solutions: 34 I · immiscible 12 I · immiscible 12 <td< td=""></td<>
Number of transitions: I - immiscible 12 + · selected 10 I - immiscible 12 species: 258 select I - indi Species: (max 5000) 307 Total Solutions: (max 200) 34 Total Solutions: (max 1500) 83 Constituents and phases at 554.68 C (temperature of final disappearance of Liquid) "inal Conditions Constituents and phases (max 1500) 83 Constituents and phases (max 200) 34 Total Solutions: (max 200) 34 Total Solutions: (max 200) 34 Total Phases (max 1500) 83 Constituents and phases (max 100) 4.9878E+01 "inal Conditions Constituents (max 200) (max 200) (max 200) 14 monthly (max 100) (max 200) 14 monthly (max 100) 1
Number of transitions: All + · selected 10 species: 258 solutions: Select Joint Species (max 200) 34 Total Solutions (max 200) 34 Total Phases (max 1500) Government Sale of Final disappearance of Liquid) Tinal Conditions Equilibrium Constrained of final disappearance of Liquid) Constrained of final disappearance of Liquid) (A) (B) I(C) Product H(I) Constrained of final disappearance of Liquid)
Solutions: 34 Select Iotal Solutions (max 1500) 83 Total Phases (max 1500) 83 Cons. Phase TOTAL AMT/g.atom TOTAL AMT/gram. 1 1 HCP-A3 2.0452E+00 4.9878E+01 Constrained Constrained TOTAL 4.9878E+01
Image: Conditions Image: Conditions Image: Conditions Cons. PHASE TOTAL AMT/g.atom TOTAL AMT/gram Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions Image: Conditions
Tinal Conditions
(A) (B) T(C) Pratm) V Product H(I) V C normal C normal transitions
700 100 10 1 C transitions only C open 2 2 1 RCP-R3 2.01372+00 4.97032+01
10 steps Table 61+ calculations - no time limit - Calculate >> TOTAL: 2.0242E+00 5.0122E+01
TOTAL ANT/g atom TOTAL ANT/g atom
HCP-A3 4.0589E+00 9.552E+01
1.05255-02 4.1804E-01
('Double-Click' on any phase listed above to recycle it through EQUILI
SUMMARY OF REACTIONS
Cooling
700 to 629.71 C (DELTA H = -9.7757E+03 J)
Liquid cooling
Constituent 1
629.71 to 616.76 C (DELTA H = -1.8586E+04 J)
Liquid - Umal Conditions
Constitu <a> T(C) P(atm) Product H(s
616.76 t 700 100 1

EX10. Phase diagram : AZ31 – Sr phase diagram

Phase Diagram - Components —	
File Edit Onits Data Search Data Evaluation Help Image: Imag	📑 📑
1 - 2 Note: - on the phase diagram the units of mass	Phase Diagram - Menu: comments - × Eile Units Parameters Variables Help T(C) P(atm) Energy(J) Quantity(g) Vol(litre) Im I
will be g, but the chemical formulae of the components remain molar values.	Components (2) (gram) Mg0.96897Al0.027277Zn0.0037517 + Sr Products Compound species gas € ideal C real 0 aqueous 0 pure liquids 0 + pure solids 55 species: 55 Species: 55 Species: 55 (gram) Mg0.96897Al0.027277Zn0.0037517 + Sr Custom Solutions * * Base-Phase Full Name • 1 FTlite-A1 FCC-A1 FCC-A1 FTLite-A3 HCP-A3 1 FTlite-A3 HCP-A3 1 FTlite-A12 CBCC-A12 Prototype-Mg assume molar volumes of solids and liquids = 0 c include molar volumes of solids and liquids = 0 c include molar volume data and physical propetties data
 classical phase diagram (default) aqueous diagram with molalities, and iso-Eh & iso-f reciprocal diagram with 2 cations and 2 anions Scheil-Gulliver constituent diagram 	Target I FTite-C36 C36 Prototype-MgNi2 Image: paraequilibrium & Gmin edit Image:
Next >> FactSage 8.0 Compound: 1/23 databases Solution: 1/23 databases	Variables Phase Diagram T(C) Sr/(L+Sr)

In FactSage, all the input is in molar formula.

Thus, in order to add AZ31 (97wt%Mg-3wt%Al-1wt%Zn), we have to do conversion of the composition into molar fraction first. Then, add this molar formula as input

97wt%Mg-3wt%Al-1wt%Zn -> 0.96897Mg-0.027277Al-0.0037517Zn

EX11. Phase diagram: AZ31 – Sr – Ca isothermal section

EX12-1. Mg-Al-Zn + 1% Sr triangle /rectangular isothermal section

存 Phase Diagram - Menu: last system	n	×
<u>File Units Parameters Variables</u>	<u>H</u> elp	
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	
- Components (4)		🕼 Variables: Mg-Al-Zn-Sr composition #2. vs composition #1.
components (4)		
Products Compound species gas © ideal C real 0 aqueous 0 pure liquids 0 + pure solids 55	(gram) Mg + AI + Zn + Sr olution phases • • Base-Phase Full Name I FTlite-Ligu Liquid I FTlite-A1 FCCA1 I FTlite-A2 BCC-A2 I FTlite-A3 HCP-A3 I FTlite-A3" HCP-Zn Prototype-Mg	Variables I and P Y C compositions 3 X Temperature $a \\ c \\ d \\ d \\ c \\ d \\ d \\ c \\ d \\ d \\ c \\ d \\ d$
species: 55	I FTlite-A12 CBCC-A12 Prototype-Mn	X,Y steps 11
	I FTlite-C36 C36 Prototype-MgNi2	
Target - - none - Estimate T(K): Estimate T(K): 1000 Variables - T(C) Sr/(L+Sr+Ca) 300 0 Ca/(L+Sr+Ca) vs FactSage 8.0 -	Legend - immiscible 14 - selected 8 Select Solutions: 36 Select Ph Ca/(L+Sr+Ca) 0 0.03 g0.96897Al0.027277Zn0.0037517	Compositions Quantity(g) #1 Mg + 0 Al + 0 Zn + 0 Sr Mg + 1 Al + 1 Zn + 0 Sr Imax Imax
Compositions Quantity(g)		
#4. 0 Mg + 0 1 Mg + 1 #4 log10(composition)	$\begin{array}{c} AI + \boxed{0} & Zn + \boxed{1} & Sr \\ AI + \boxed{1} & Zn + \boxed{1} & Sr \\ \hline $	In the triangle diagram, the composition of 4 th element is constant.

EX12-2. Mg-Al-Zn + 1% Sr triangle /rectangular isothermal section

存 Phase Diagram - Menu: commen	ts	>				
<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>V</u> ariables	Help					
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	TT 🕞 🦱 🤇				
Components (4)						
	(gram) Mg + Al + Zn + Sr					
Products		Variable	: Ma-Al-Zn-Sr. compo	sition #2 vs compositi	ion #1	X
Compound species	Solution phases	O fixed acti	s. Mg Ar Zh Sr compo	sition #2. vs compositi	1011 # 1.	~
gas © ideal C real 0 aqueous 0	I FTlite-Al FCC-Al	0 ideal solu - Variable Pseudonyms	compositions 3	- T and P Temperature		or Volume
+ pure solids 55	I FTIREAZ BLC-AZ	appiy III Volume data X		C T(C) Cor	nstant 💌 💿 P(atm)	constant 📼
species: 55	I FTlite-A12 CBCC-A12 Prototype-Mg	solids and a b	○ log10(a) 🕶 0	NO 1 (C)	C log P	
	I FTilte-C36 C36 Prototype-Mg2n2	paraequilib A	_		500 C V(litre)	1
- none -	Legend Vir I · immiscible 14 V Show 🕶 all C selected Vir				C log V	
Estimate T(K): 1000	+ · selected 8 species: 235 Select To solutions: 36 Select To	btal Solutions btal Phases [1 Next >>			
Variables	Phas	se Diagram				
T(C) Al/(Mg+Al+Zn+Sr)	Zn/(Mg+Al+Zn Sr/(Mg+Al+Zn+Sr) Y	- Composi	ions Quantity[g]			
7n/MatólaZntSr) vs. 6l/MatólaZn	- nol	time limit - 0	Mg + 1 Al +	0 Zn + 0	Sr X-axis 💌	
		#1.		1 7n + 1	= 0.1 (max)	
FactSage 8.0 C:\Worksho	op80\Workshop\ex12-1.phas				0 (min)	
		L #1 log	lu(composition)		<u> </u>	
		0	Mg + 0 Al +	1 Zn + 0	Sr Y-axis 👻	
		#2.		1 7n + 1	$_{Sr} = 0.05 (max)$	
					0 (min)	
		1 ++2 log	ro(composition)			
		0	Mg + 0 Al +	0 Zn + 1	Sr constant 💌	
		#3.	Ma + 1 Al +	1 Zn + 1	Sr =	
		☐ #3 log	O(composition)		0.01 (min)	
						014
				Cancel		UK

Alloy Design 48

EX13. Metastable phase: Fe-C binary system w/wo C (Fe3C)

Selection - Phase Diagram - no	o results -	🗘 Phase Diagram - Menu: last system	- 🗆 X
<u>File</u> <u>E</u> dit Show Sort		<u>File Units Parameters Variables H</u> elp	
Selected: 6/6 SOLID		T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	11 🕑 🕒 🕷
	- no results -	Components (2)	
+ Code Species + 3 C(s) F	Data Phase TV Activity M Sstel graphite V	(gram) Fe + C	
+ 4 C(s2) F + 5 Fe(s) F + 6 Fe(s2) F	Ss <u>tel d</u> iamond V Sstel BCC_A2 o Sstel ECC_A1 o	Products	- Custon Salutions
+ 7 Fe3C(s) F + 8 Fe3C(s2) F	Sstel CEMENTITE o Sstel KSI_CARBIDE o	Solution prases * + Base-Phase Full Name gas I ideal C real I FSstel-Liqu LIQUID	0 fixed activities Details 0 ideal solutions
		J FSstel-FCC FCC_A1 use liquids 0 + pure solids 6 species: 6 Legend	Pseudonyms apply Edit Volume data assume molar volumes of solids and liquids = 0 include molar volume data and physical properties data
		- none - Estimate T(K): 1000 I - immiscible 2 J - 3-immiscible 1 Species: 14 solutions: 7 Select	Itel a species 2 Iotal Species (max 5000) 20 Iotal Solutions (max 200) 7 Iotal Phases (max 1500) 13
			Phase Diagram
permit selection of X" species	Help Suppress Duplicates Edit priority list : 1	I(L) L/(Fe+L) 500 1600 0 0.1	Y X
Show Salastad		T(C) vs C/(Fe+C)	no time limit · Calculate >>
Show Selected S	Select/Liear Liea	Enablished 0.0	
		radioage o.u	

Although C (carbon) is thermodynamically stable phase than Fe3C, C is not appearing in most of low carbon steel. Thus, in order to do proper calculations, C should be removed from above compound list in particular in steel.

In the same way, if a certain phase is not readily formed (sluggish to form), we can unselect the phase to simulate the system more realistically.

Metastable phase diagram without C

EX14-1. J option (3 possible miscibility gaps): Fe-Nb-Ti-C-N system

"J" option (default) is needed for a phase which has more than 2 possible miscibility gaps. Most well known example is Fe FCC phase in steel with (Ti,Nb)(C,N) phase formation. Since Ti(C,N) and Nb(C,N) have FCC crystal structure, we describe both FCC metallic phase and carbonitride phase using the same FCC phase model. Thus, in order to do proper calculations, J option should be applied to FCC phase in this case.

GactSage[™]

Alloy Design 53

EX14-2. Carbide and Nitride precipitation in microalloyed steels

Microalloyed steels are used for special high-strength applications such as pipelines. In order for the steel to acquire good mechanical properties, it needs to be thermo-mechanically treated. FactSage can help in finding the correct temperatures for treating these steels.

The steel is annealed in the austenite region an then cooled through the temperatures Ar3 and Ar1 temperatures (continuous cooling austenite to ferrite transformation start and finish.

The goal of this study is to find the ideal annealing temperatures to avoid precipitation of Nb carbonitrides and promote precipitation of NbC

EX14-2. Carbide and Nitride precipitation in microalloyed steels

1. A typical microalloyed steel composition is entered (For more information, refer to J. Calvo et al. / Materials Science and Engineering A 520 (2009) 90–96)

存 Equilib - Reactants			- 🗆 X	
<u>File Edit Table Units Data Searce</u>	n 🛛 Data Evaluati 🗘 Data Search			×
🗅 🚅 🕂 📰	T(C) P(atm - Databases -	1/23 compound databases, 1/	23 solution databases	
	Gact	GactSage" SGTE	compounds only Privat	te Databases
1.10	FactPS	FScopp BINS	solutions only EXAM	🗆 SGTEa 🛛 SGTEb
	FT salt	FSstel		
Quantity(g)	Species FTmisc	🗆 FSapsi 🔲 SGsold	Clear All	
97.935 Fe		Other	Add/Bemove Data	
* 0.039 C	F I frtz	ELEM SGnobl		
+ 1.51 Mr	n FTpulp	FT Jemo SpMCBN	RefreshDatabases	
+ 0.08 Si	🗌 🗌 FTlite	FThucl TDnucl		
+ 0.018 Ti	– Information –			
+ 0.28	o	2 Select on	v the ESstel data	0260
+ 0.068 Nb			y the i Ostel data	
+ 0.011				
+ 0.05				
+ 0.0095	Options - sea	arch for product species		
10.0000		Include compounds — aseous ions (plass	mas) Limits — Limits — Crganic species C>	(Hy, X(max) = 2
	Default	aqueous species	Minimum solution c	omponents: O 1 O 2 cpts
	Cance	el	Summary	ОК
FactSage 8.0 Compound: 1/23 da	atabases Solut		111	

Alloy Design 56

JactSage[™]

3. We will select a range of temperature encompassing the whole austenite phase.

Plot g vs T(C) for all stable solids and solutions (by click "select All stable phases")

T	#	Species	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity (max) 🔺
1	1080	MoNbN	0	0	0	0	1.8371E-05	4.0479E-03
		SOLUTIONS						
	1081	GAS	0	0	0	0	0	0
	1082	Liqu#1	0	1.7934	0	0	0.578831	1
	1083	Liqu#2	0	0	0	0	0.578831	1
	1084	FCC#1	0	1.7892	0	0	0.954964	1
	1085	FCC#2	0	1.1401E-03	0	0	0.954964	1
	1086	FCC#3	0	6.7841E-04	0	0	0.13109	1
	1087	BCC#1	0	1.7892	0	0	0.962916	1
	1088	BCC#2	0	0	0	0	1.4406E-02	1
	1089	BCC#3	0	0	0	0	9.7787E-04	1
	1090	HCP#1	0	0	0	0	0.670344	0.76236
	1091	HCP#2	0	0	0	0	0.18217	0.719492
	1092	CEME	0	0	0	0	1.6061E-03	8.8501E-02
	1093	M23C	0	0	0	0	7.2122E-18	2.2417E-07
	1094	M7C3	0	0	0	0	2.2489E-09	8.7626E-05
	1095	M6C	0	0	0	0	6.1026E-06	4.5564E-03
								•
	Clear ick on the	r	emove species.	source phase name [page] 161 g	ss Order mole Ginteger gram Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger Ginteger	# nax) (max) (max) (max) Select 1 phase Select 1 phase	op 15 species and s with zero mass ect Sele	9 species selected ect all stable phases ect stable pure liquids

Alloy Design 58

1. From the graph, we can deduce equilibrium transformation temperatures from austenite to ferrite.

2. We should also look at the very low compositions, since all the microalloyed elements will be present in very small quantities.

C:\FactSage83\RIST-Sintering\Equi0.res 25Aug23 FCC#1 FCC#1 FCC#1 100 080 gram 060 BCC#1 040 Ae₃ 020 FCC#2 FCC#2 FCC#2 FCC#2 0 900 1000 1100 1200 1300 1500 800 1400 1600 T(C)

97.935 Fe + 0.039 C + 1.51 Mn + 0.08 Si +

Alloy Design 59

1. Using a log scale is very convenient for looking at the microalloyed elements.

2. It is clearly seen that the FCC#1, #2 and #3 phases are forming. In this case, they are probably carbides and nitrides.
We can check this by plotting their composition with temperature

Alloy Design 60

We will first select all the species in FCC#1 and se how they are distributed.

F	#	Species	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity (max
	FCC#1		FCC A1					
	21	Al	0	4.0708E-04	4.7860E-18	2.4867E-04	4.1356E-12	3.0119E-06
	22	Fe	0	1.7511	2.0399E-06	0.985055	0.772987	0.979446
	23	Mn	0	2.7444E-02	1.8261E-07	6.6014E-02	1.0493E-02	5.9879E-02
	24	Mo	0	2.9133E-03	1.0253E-07	6.2586E-03	8.1993E-04	4.0316E-03
·	25	Nb	0	7.2576E-04	5.6861E-08	2.0250E-02	7.4692E-11	2.3562E-04
	26	Si	0	2.8442E-03	4.8736E-15	1.5906E-03	2.1637E-13	1.0937E-06
	27	Ti	0	1.3524E-04	1.4386E-09	1.5861E-02	1.0348E-13	1.5213E-05
	28	V	0	9.7821E-04	2.1452E-05	1.8696E-02	5.9493E-08	1.1250E-04
	29	AIC	0	7.3519E-07	1.3737E-16	7.2734E-07	4.1651E-17	1.4266E-10
	30	FeC	0	3.1624E-03	5.8551E-05	2.5067E-02	2.0009E-05	3.2646E-04
·	31	MnC	0	5.7900E-05	5.4987E-07	9.9594E-03	1.7967E-06	9.1140E-03
	32	MoC	0	2.1415E-04	2.8467E-07	0.1283	1.0672E-05	0.112674
	33	NEC	0	7.0559E-04	1.5744E-09	0.543254	8.8343E-04	0.722589
·	34	SiC	0	5.1367E-06	1.3989E-13	2.6215E-05	1.3645E-13	9.9780E-09
·	35	TiC	0	3.4792E-05	3.9832E-11	7.0975E-02	1.9573E-04	4.3605E-03
·	36	VC	0	6.3969E-04	1.6128E-07	0.383256	3.6960E-05	0.350844
	37	AIN	0	9.5017E-08	1.3034E-19	1.0813E-07	2.7165E-14	5.1200E-07
·	38	FeN	0	4.0871E-04	5.5554E-08	0.141664	7.8240E-10	3.5146E-05
·	39	MnN	0	6.4059E-06	1.2525E-07	3.9924E-05	2.8494E-07	2.2803E-05
·	40	MoN	0	1.2349E-06	1.7090E-09	7.3986E-04	4.9738E-08	1.8085E-05
·	41	NEN	0	3.9955E-06	1.2831E-13	1.4116E-02	1.2724E-04	0.19341
·	42	SiN	0	6.6387E-07	1.3273E-16	5.6314E-07	4.5708E-20	3.1051E-09
·	43	TiN	0	2.0838E-04	3.2462E-15	0.778242	4.3162E-02	0.604403
	44	VN	0	3.6889E-06	4.8408E-11	4.4002E-03	1.0995E-03	0.302572
_	<u>FCC#2</u>		FCC A1					
_	45	Al	0	3.2904E-13	5.1067E-21	2.4867E-04	4.1356E-12	3.0119E-06
_	46	Fe	0	5.9360E-07	3.1055E-07	0.985055	0.772987	0.979446
	47	Mn	0	5.3043E-07	8.0779E-13	1.6157E-02	1.0493E-02	5.9879E-02
		-	- Di	source Mas phase C	mole C mass (r C fraction	# Select	Top 15	24 species select

Alloy Design 61

EX15-1. Phase diagram PO2 – T: Oxidation of pure Fe

Phase Diagram - Components File Edit Units Data Search Data Evaluation Help	- Oxidation of steel requires multiple databases
Image: Image of the second	(a) FSStel: steel phases (b) FToxid: oxide phases (c) FactPS: gases and others
-Databases - 3/23 compound databases, 2/23 solution databases	Phase Diagram - Menu: last system - X
Image: Source	Eile Units Parameters Variables Help T(C) P(atm) Energy(J) Quantity(g) Vol(litre) Components (2) (gram) 02 + Fe
FThelg ELEM SGnobl FTpulp FTdemo SpMCBN TDmeph TDmeph FTite FTnucl TDnucl FactSage 8.0 Comp Information - Options - search for product species Include compounds Organic species Default gaseous ions (plasmas) Organic species Minimum solu Imited data compounds (25C) Minimum solu	Products Compound species gas () ideal () aqueous 0 aqueous 0 pure liquids 0 * - custom selection species: 6 * - custom selection species: 6 Legend L: immiscible 1 + selected 2 I Show () all () selected solutions: 11 State T(K): 1000
	Variables Phase Diagram T(C) log10(p(02)) 500 1700 i40 0 log10 p(02)/atm vs T(C) × FactSage 8.0 ////////////////////////////////////

Phase Diagram - Menu: last system	- X]							
File Units Parameters Variables Help									
I(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🎹 🛄 💌								
Components (2)									
(gram) 02 + Fe									
Compound species Solution phases gas C ideal C real 0 actractors 0 pure liquids 0 + Base-Phase Full Name I FSstel-Liqu LIQUID J FSstel-FCC FCC_A1 I FSstel-BCC BCC_A2 I FToxid-SLAGA A-Slag-lig all oxides + S + FToxid-SPINA A-Spinel + FToxid-MeD_A A-Monoxide	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume data assume molar volumes of solids and liquids = 0 include molar volume data and physical properties data Daraequilibrium & Gmin Ledit	Selectio	n - Phase Diagram	- no results				- 0	×
Legend Show ④ all ○ selected		<u>File</u> <u>E</u> dit	Show Sort						
Estimate T(K): 1000 J - 3 immiscible 1	Total Species (max 5000) 32	Selected: 6/2	23 SOLID	Duplicates	selected. X d	enotes species e	excluded by default		
+ - selected 2 solutions: 11 Select	Total Solutions (max 200) 11				- no	o results -			_
	Total Phases (max 1500) 17	+ Cod	e Species	Data	Phase	T V Activ	ity Minimum	Maximum	1
Variables	Phase Diagram	X 17	Fe203(s)	FactPS	hematite	V			
T(C) log10(p(02))	Y	X 18	Fe2O3(s2)	FactPS	High-Pressure-H	V			
500 1700 +40 0	×	X 19	Fe2O3(s3)	FactPS	High-Pressure-H	V			
	• no time limit • Calculate >>	X 20	Fe304(s)	FactPS 1	Magnetite				_
log10 p(U2)/atm_vs_1(C)		X 21	Fe3U4(s2)	FactPS I	Magnetite	V			-
		× 23	Fe304(s3)	FactPS	High-Pressure-m	V			
FactSage 8.0	1	+ 24	Fels	FSstel I	BCC A2	0			
		+ 25	Fe(s2)	FSstel I	FCC A1	0			
		+ 26	FeO(s)	FSstel N	Wustite	V			
		× 27	Fe2O3(s)	FSstel I	hematite	V			
		× 28	Fe2O3(s2)	FSstel I	High-Pressure-H	V			
		X 29	Fe2O3(s3)	FSstel I	High-Pressure-H	V			
		× 30	Fe304(s)	FSstel I	Magnetite	V			
		X 31	Fe304(s2)	FSstel 1	Magnetite	V			_
		X 32	Fe304(s3)	FSstel I	High-Pressure-m	V			_
		× 33	Fe304(s4)	FSstel I	High-Pressure-m	V			
		+ 54	Fe2U3[S]	FLOXID	nematite	V			
			E-202(-2)	ETouid	High Dressure II.	57			
		+ 35	Fe2O3(s2)	FToxid I	High-Pressure-H High-Pressure-H	V			
		+ 35 + 36	Fe2O3(s2) Fe2O3(s3)	FToxid H FToxid H	High-Pressure-H High-Pressure-H	V V	: oriority list :	1	•
		+ 35 + 36	Fe2O3(s2) Fe2O3(s3) selection of X' specie	FToxid I FToxid I s Help	High-Pressure-H High-Pressure-H Suppress Dup	V V Dlicates Edit	priority list :		•

EX15-2. phase diagram PO2 – X: Oxidation of Fe-Cr

🕼 Data Search	×	
-Databases - 3/23 compound databases, 2/23 solution databas	es	
✔ FactPS ↓ FScopp ↓ BINS compounds only ♥ FactPS ↓ FScopp ↓ BINS solutions only ♥ FToxid ↓ FSlead ↓ SGPS ↓ FT salt ♥ FSstel ↓ SGTE ↓ FT misc ↓ FSupsi ↓ SGsold ↓ FT hall ↓ FSstel ↓ GactAll	Private Databases SGTEA SGTEA SGTEA If we want to use oxygen a O2 should be added as inp	s one of axes, out component
FT0xCN Other Add/Remove Data	存 Phase Diagram - Menu: comments	- 🗆 X
FThelg ELEM SGnobl	<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>V</u> ariables <u>H</u> elp	
TDmeph	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	III 🖳 💽 🕱
	Components (3)	
- Information -	(gram) 02 + Fe + Cr	
Options - search for product species Include compounds gaseous ions (plasmas) aqueous species limited data compounds (25C) Cancel Summary	Compound species gas () ideal () real 0 aqueous 0 pure liquids 0 + pure solids 17 * - custom selection 17 - rarget 17 - none - 17 Estimate T(K): 1000 Variables Cr/(Fe+Cr)	Custom Solutions 0 fixed activities 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data • paraequilibrium & Gmin edit <u>Total Species (max 5000)</u> 69 <u>Total Solutions (max 200)</u> 13 <u>Total Phases (max 1500)</u> 30 Phase Diagram
	1200 -20 0 0 1	ΥĻ
	[log10 p(02)/atm_vs_Cr/(Fe+Cr)]	no time limit · Calculate >>
GactSage™	FactSage 8.0 C:\Workshop80\Workshop\ex15-2.phas	www.ractsage.com

Any kind of counter-cross inter-diffusion reaction at interface can be simulated with <A> option in Equilib. This assume the diffusivity of all components in both materials are the same.

Joining of <A>AI-Mg // <1-A>AZ31

EX17. Oxygen partial pressure control for oxidation of metals

EX17-1. Oxygen partial pressure control using Dew-point concept

🕞 Equilib - Reactants		- 🗆 X
File Edit Run Macro Table Units Data Search Data Evaluation	on <u>H</u> elp	
T(C) P(atm) Energy(J) Quanti	ty(mol) Vol(litre)	We should select real gas to obtain
1-3		accurate Gibbs energy and volume
		fraction of gas at low temperature
Quantity(mol) Species Phas	e I(C) P(total)**	and high pressure
+ 5	🛛 存 Equilib - Menu: last syst	
+ 1	<u>File Units</u> Parameters	<u>H</u> elp
		T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)
	Reactants (3)	
		95 N2 + 5 H2 + H20
	Products Compound species	Solution phases
		* + Base-Phase Full Name O fixed activities Details
	+ gas C ideal F real	
	+ pure liquids	8 apply 🗖 Edit
	+ pure solids	8 Volume and physical prop data
	species:	45 solids and liquids = 0
Next >>	species.	C use V & phys. property data
FactSage 8.3 Compound: 1/21 databases Solution: 0/18 data	t Target	Legend
	- none -	I Show (● all C selected Total Species. 10 <u>Total Species (max 7000)</u> 45
	Estimate (K): 1000	solutions: 0 Select Total Solutions (max 200)
	county(not) la	Total Phases (max 1500) 17
	Final Conditions	Equilibrium
		-30 1 C transitions only C open
	10 steps 🗖 Table	1 calculation - no time limit - Calculate >>
	FactSage 8.3	alaua 70
A Jact Sage	Alloy De	esign / 3 www.tactsage.com

Equilib - Results -30 C					- 0 ×	<	
Output Edit Show Pages	Einal Conditio	ns					
		T(C) P(atm) En	ergy(J) Quantity(mol)	Vol(litre)	tit 💷 🦱 💽	7:	
					FactSage 8.3		
T = -30.00 C							
P = 1 atm							
V = 1927.2 dm3							
STREAM CONSTITUENTS		AMOUNT (mol		M_{0}	ill boot this		as at 200°C using
N2		9 50008+01			in near this	s ga	as at out to using
H2		5.0000E+00		- 1	('I -	-	-
H2O		1.0000E+00		strear	n IIIe.		
11		EQUIL AMOUNT	MOLE FRACTION	FUGACITY			
PHASE: gas_real		mol		atm			
N2	TV	9.3336E+01	9.6512E-01	9.6421E-01			
NH3	TV	3.3280E+00	3.4413E-02	3.4117E-02			
H2O	TV	3.7039E-02	3.8299E-04	3.7730E-04			
H2	TV	7.9665E-03	8.2376E-05	8.2554E-05			
N2H5OH	T	4.9431E-38	5.1114E-40	5.1010E-40			
N2H4	T	1.2503E-38	1.2928E-40	1.2902E-40			
H	1	4.9894E-45	5.1592E-47	5.148/E-4/			
UNITU UNITU	1	2.1431E-45 E 0299F-E4	2.2160E-47	5 2009F-56		1	
OH	1	2 71528-57	2 00768-56	2 00107-50			
NO	TU	1 85098-66	1 91398-69	1 91118-69			
N2O	TU	3 19048-69	3 29898-71	3 27708-71			
HNO	т	2 1363E-73	2 2090E-75	2.20458-75			
TOTAL :	-	9.6709E+01	1.0000E+00	1.0000E+00			
System component		Amount/mol	Amount/gram	Mole fraction	Mass fraction		
0		3.7039E-02	0.59260	1.8509E-04	2.2178E-04		
N		190.00	2661.3	0.94947	0.99598		
н		10.074	10.154	5.0342E-02	3.8001E-03		
		mol		ACTIVITY			
H2O_Ice(s)		9.6296E-01		1.0000E+00		1	
H2O_liquid(liq)	Т	0.0000E+00		7.4696E-01			
NH4OH_liquid(liq)	T	0.0000E+00		2.1158E-01			
NH4OH_solid(s)	T	0.0000E+00		1.4008E-01			
(NH4)20_liquid(liq)	T	0.0000E+00		4.4768E-02			
HOOH liquid (liq)	T	0.00002+00		4.5/01E-3/ 3.0572E-74			
****************		**********	*****	3.03/25-/4			
-		-	-				
						+12	

	Croating atraa	m filo						
ive or Print As	Cleaning Silea		uantity(mol) Vol(litre)					111
epeat Save								
ot >	FactSage 8.3							
uilib Results file >								
ream File > Recycle all streams	15							
rmat > Save stream file	> Save gas phase							
ct-XML > Stream file propert	rties Save pure liquids							
ct-Optimal > Summary of stream	save aqueous							
Directory (C:\FAC	CTSAGEWS₩) Save solutions >							
H	т							
fresh NH2 HNNH	T							
Vap loops OH	T							
+ 1.9139E-68 NO + 3.2989E-71 N2O	VI VI							
+ 2.2090E-75 HNO	T)							
.96296 mol H20_Ice								
(-30.00 C, 1 atm, S1, a=1.0000)								
mol H20_liquid	т							
(-30.00 C, 1 atm, L1, a=0.74696)								
mol NH4OH_liquid	т							
(-30.00 C, 1 atm, L1, a=0.21158)								
mol NH40H_solid (-30.00 C l atm Sl a=0.14008)	T							
	-							
(-30.00 C, 1 atm, L1, a=4.4768E-02)	I I							
mol N2H4 liquid	_							
	T							
(-30.00 C, 1 atm, L1, a=4.5781E-37)) T							
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid) T							
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74)	р т , т							
<pre>(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase actions/phase</pre>	T T Divities = 1.00E-75							
<pre>(-30.00 C, 1 atm, Ll, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, Ll, a=3.0572E-74) -off limit for gaseous fractions/phase acti a on 19 product species identified with "T"</pre>	T T) tivities = 1.00E-75 [" have been extrapolated outside their valid temperatur	e ranges						
<pre>(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) coff limit for gaseous fractions/phase act: a on 19 product species identified with "T" coduct species identified with "V" are mode</pre>	T T bivities = 1.00E-75 [" have been extrapolated outside their valid temperatur deled with an equation of state	e ranges	Save mixture/stream (*,	mixt) - enter the file number (1 - 9999) or na	me		×	
<pre>(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "I" roduct species identified with "U" are mode</pre>	T T bivities = 1.00E-75 [" have been extrapolated outside their valid temperatur deled with an equation of state	e ranges	$\mathbf{\hat{c}}$ Save mixture/stream (*.	mixt) - enter the file number (1 - 9999) or na - 동 면 이 . 토 면 이 . 토랍 디스크 (C1) > FactSat	me zeWS v (Y FactSageWS 전식	×	
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0571E-74) -off limit for gaseous fractions/phase act: a on 15 product species identified with "T' roduct species identified with "V" are mode 	T T T tivities = 1.00E-75 T" have been extrapolated outside their valid temperatur deled with an equation of state S CP S CP	e ranges	$ \begin{array}{c} \hline & \\ \hline \\ \hline$	mixt) - enter the file number (1 - 9999) or na 내 PC > 로컬 디스크 (C:) > FactSag	me geWS ~ (것 FactSageWS 검색	× م	
<pre>(-30.00 C, 1 atm, LL, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, LL, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T' roduct species identified with "V" are mode H G V (J) (J) (J) (litre)</pre>	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state S Cp (J/K) (J/K)	e ranges	 	mixt) - enter the file number (1 - 9999) or na - > 내 PC > 로컬 디스크 (C) > FactSag	me geWS ~ (7 FactSageWS 검색	× م ۲	
(-30.00 C, 1 atm, LL, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, LL, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T' roduct species identified with "V" are mod H G V (J) (J) (11tre) 02989E+05 -5.00390E+06 1.52722E+03 1.6	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state S Cp (J/K) (J/K) .80596E+04 3.10032E+03	e ranges	 	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로칠 디스크 (C) > FactSag 이름	me geWS) FactSageWS 검색 형 크기	× م ≣ • ∎	
(-30.00 C, 1 atm, LL, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, LL, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T' roduct species identified with "V" are mode H G V (J) (J) (J) (Litre) 02969E+05 -5.00350E+06 1.92722E+03 1.6 H (J)	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state S Cp (J/K) (J/K) .80996E+04 3.10032E+03 G S Cp (T) (TK)	e ranges		mixt) - enter the file number (1 - 9999) or na > 나무 PC > 로칠 디스크 (C:) > FactSay 이름 Add-ons_Apps	ime geWS	7 FactSageWS 검색 영 크기 1일 플더	× م • = =	
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T' roduct species identified with "V" are mod H G V (J) (J) (Litre) 02989E+05 -5.00390E+06 1.92722E+03 1.6 H (J) _real -3.1909E74	T T T tivities = 1.00E-75 T" have been extrapolated outside their valid temperatur deled with an equation of state S (J/K) (J/K) (J/K) (J/K) (J/K) (J/K) (J/K) (J/K) +05 -4.71132E+06 1.0053E+04 3.06542E+03	e ranges		mixt) - enter the file number (1 - 9999) or na → LE PC → 로칠 디스크 (C) → FactSay 이름 Add-ons_Apps CalebadOntimizer	me geWS	Y FactSageWS 검색 형 크기 일 물더 일 문더	× م • = =	
(-30.00 C, I atm, LL, a=4.5781E-37) mol HOOH_liquid (-30.00 C, I atm, LL, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mode H G V (J) (J) (1itre) H (J) preal -3.19095E+0 _Ice -2.83890E+0	T T T tivities = 1.00E-75 T" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges	✔ Save mixture/stream (*. ← → ↑ 구성 ▼ 새 울덕 ☆ 홈 . > OneDrive	mixt) - enter the file number (1 - 9999) or na > 나용 PC > 로컬 디스크 (C:) > FactSag 이름 Add-ons_Apps CalphadOptimizer	me geWS	가 FactSageWS 검색 형 크기 1일 몰려 12 1일 몰려 12	× م ≣ • ∎	
(-30.00 C, 1 arm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 arm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mode (3) (4) (5) (7) (1) (7) (1) (7) (1) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (3) (4) (5) (5) (4) (5) (6) (7) (1) (7) (7) (7) (7) (7) (7) (7) (7	T T T tivities = 1.00E-75 T" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges	² Save mixture/stream (*. ← → ∨ ↑ 구성 ▼ 세 물덕 ← ▲ → ● OneDrive ■ 바탕 화면	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로컬 디스크 (C:) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage	me geWS	3 FactSageWS 검색 형 크기 일 좀더 일 좀더 일 좀더	× ۶ Ξ • •	
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mode H G V (J) (J) (litre) L22952E+05 -5.00350E+06 1.52722E+03 1.(H (J) _real -3.15055E+(_1ce -2.8390E+(al mass/gram = 2685.4 al mass/gram excluding gas_real = 17.348	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state S Cp (J/K) (J/K) .00596E+04 3.10032E+03 G S Cp (J) (J/K) (J/K) .00536E+04 3.06542E+03 +05 -4.71132E+06 1.00638E+04 3.06542E+03 +05 -2.52586E+05 3.57622E+01 3.49035E+01	e ranges	² Save mixture/stream (*. ← → ∨ ↑ 구성 ▼ 세종대 → ○ neDrive ■ 바탕 화면 # ↓ 다운로드 #	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로칠 디스크 (C) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples	me 2003-06-26 오후 1:08 피 2023-06-26 오후 1:08 피 2023-06-26 오후 1:08 피 2023-06-26 오후 1:08 피 2023-06-26 오후 1:08 피	7 FactSageWS 검색 형 크기 일 몰려 달 일 몰려 달 일 몰려 달 일 몰려 달	× م • = =	
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mod H G V (J) (J) (11tre) -22995E+05 -5.00390E+06 1.52722E+03 1.(H (J) real -3.19095E+(Ice -2.8390E+(all mass/gram excluding gas_real = 17.340 abases: FactPS 0.3 a Search options: exclude gas ions; organic	T T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges		mixt) - enter the file number (1 - 9999) or na > 내 PC > 로컬 디스크 (C.) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO	me 2003-06-28 오루 1:08 피 2023-06-28 오루 1:08 피	7 FactSageWS 검색 형 크기 일 몰려 달 일 몰려 달 일 몰려 달 일 몰려 달	× م • = =	
(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mod H G V (3) (3) (1itre) U2905E+05 -5.00350E+06 1.52722E+03 1.(H (3) real -3.19055E+(Ice -2.83890E+(al mass/gram = 2605.4 al mass/gram excluding gas_real = 17.340 absaes: FactDS 8.3 a Search options: exclude gas ions; organic	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges		mixt) - enter the file number (1 - 9999) or na > 내 PC > 로컬 디스크 (C.) > FactSec 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO FACTDATA	me geWS	7 FactSageWS 검색 명 크기 1일 몰려 1 1일 몰려 1	× م • = =	
(-30.00 C, 1 atm, L1, a=4.5781E-37)) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=4.5781E-37)) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) :-off limit for gaseous fractions/phase act: a on 19 product species identified with "T product species identified with "V" are mod 	T T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges	↓ Save mixture/stream (*. ← → ∨ ↑ 구성 ▼ 세 몰덕 ☆ 홈 > ● OneDrive ■ 바탕 화면 ♪ ↓ 다운로드 ♪ ■ 문서 ♪ ● 사진 ♪	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로칠 디스크 (C) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO FACTDATA FactHelp	me geWS	FactSageWS 검색 형 크기 일 몰려	× م • = =	
(-30.00 C, 1 atm, L1, a=4.5781E-37)) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=4.5781E-37)) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) :-off limit for gaseous fractions/phase act: a on 19 product species identified with "T product species identified with "V" are mod 	T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state 	e ranges	↓ Save mixture/stream (*. ← → ∨ ↑ 구성 ▼ 세 몰덕 ☆ 홈 > ● OneDrive ■ 바탕 화면 ● 다운로드 ■ 문서 ■ 사진 ● 삼진 ● 음악	mixt) - enter the file number (1 - 9999) or na > 나 PC > 로럴 디스크 (C:) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F9010 FACTDATA FactHelp EactHelp EactHelp EactHelp	me geWS	************************************	× م = • •	
(-30.00 C, 1 atm, L1, a=4.5781E-37)) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) :-off limit for gaseous fractions/phase at: :a on 15 product species identified with "T :roduct species identified with "V" are mod (J) (J) (J) (J) :real -1.1022E+03 :real -2.83890E+0 :al mass/gram = 2605.4 al mass/gram = 2605.4<	T T T tivities = 1.00E-75 T" have been extrapolated outside their valid temperatur deled with an equation of state T (J/K)	e ranges	² Save mixture/stream (*. ← → ∨ ↑ 구성 ▼ 세 물덕 ☆ 喜 → OneDrive ■ 바탕 화면 # ↓ 다운로드 # ■ 만당 화면 # ↓ 다운로드 # ■ 만서 # ♥ 사진 # ♥ 용약 # ■	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로컬 디스크 (C:) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO FACTDATA FactHelp FactSage-Teach	me peWS	가 FactSageWS 검색 중 크기 일 종리	×	
(-30.00 C, 1 acm, LL, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 acm, LL, a=3.0572E-74) -off limit for gaseous fractions/phase act: a on 19 product species identified with "T roduct species identified with "V" are mod H G V (J) (J) (J) (11tre) -22995E+05 -5.00390E+06 1.52722E+03 1.1 H (J) _real -3.19059E+1 Ice -2.03390E+1 al mass/gram = 2689.4 al mass/gram = 2689.4 al search options: exclude gas ions; organic	T T T T T T T T T T T T T T	e ranges	² Save mixture/stream (*. ← → ✓ ↑ 구성 ▼ 세종덕 ← ● ● ● ● ● ● ●	mixt) - enter the file number (1 - 9999) or na > 내 PC > 로칠 디스크 (C) > FactSag 이름 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO FFACTDATA FactHelp FactSage-Teach Add-ons_Apps	me geWS	3 FactSageWS 경색 3 FactSageWS 경색 3	× ρ Ξ • •	
<pre>(-30.00 C, 1 atm, L1, a=4.5781E-37) mol HOOH_liquid (-30.00 C, 1 atm, L1, a=3.0572E-74) off limit for gaseous fractions/phase act: i on 19 product species identified with "T ioduct species identified with "V" are mod H G V (J) (J) (Iltre) L2995E+05 -5.00390E+06 1.92722E+03 1.1 H (J) real -3.12095E+1 lmass/gram = 2609.4 l mass/gram excluding gas_real = 17.340 bases: FactPS 0.3 Search options: exclude gas ions; organic '</pre>	T T T tivities = 1.00E-75 I" have been extrapolated outside their valid temperatur deled with an equation of state S C Cp (J/K) (J/K) 	e ranges		mixt) - enter the file number (1 - 9999) or na > 나 II PC > 로칩 디스크 (C:) > FactSag 이용 Add-ons_Apps CalphadOptimizer ChemSage Examples F90IO FACTDATA FactHelp FactSage-Teach 	me geWS ~ (0 수정한 날짜 유 2023-06-26 오후 1.08 피 2023-06-26 오후 1.08 피 2023-06-28 오후 1.08 피 2023-06-28 오후 1.01 피 2023-07-02 오전 8.01 피 2023-07-02 오전 8.01 피 2023-06-28 오후 1.10 피 2023-06-28 오후 1.10 피	3 FactSageWS 경색 평 크기 일 몰려 일 일 몰려	× ρ Ξ • 0	

Equilib	- Reactants	o Table	Unite	Dat	Import	ing strean	n file	-		×
	Add a new Insert new	Reactan	t before N	12	Ctrl+R	J) Quantity(mol) V	ol(litre)	_	tit 🖳 🖪	X
1	Delete read	tant N2	 ictants							
	Mixtures a	nd Stream	ms		>	Import a m	nixture		>	
	Re-order	Ga	s-30C G	AS stre	am	Import a st	tream (or si	ngle-line mixture)) >	
	Export list	of reacta	ants		>	Edit a mixt	ure or strea	im	>	
	Import list	of reacta	ants		>	Directory	(C:₩FACTS)	AGEWS₩)		
	Clear Example									1
								🕅 Initial	Conditions	
						Next >>				
FactSage 8.3	3 Compo	ound:	1/21 datal	bases	Solution:	0/18 databases				//

Equilib - Reactants	– 🗆 X	
File Edit Run Macro Table Units Data Search Data Evaluation H	elp	
□ 🚔 + 📰 T(C) P(atm) Energy(J) Quantity(mol)	Vol(litre)	
1.1 Quantity(mol) Species 100%	T(C) P(total)** Stream# Data	
	File Unite Decomptore Unite	- L X
	Energy(J) Quantity(mol) Vol(litre) Reactants (1)	III 🖳 💽 🕱
	100% [Gas-30C]	
	Solution phases Compound species + gas O ideal I real 29 aqueous 0 + pure liquids 8 + pure solids 8 species: 45	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume and physical prop data assume molar volumes of solids and liquids = 0 use only molar volume data use V & phys. property data
Next >> FactSage 8.3 Compound: 1/21 databases Solution: 0/18 databases	Target - none - Estimate T(K): 1000 Quantity(mol): 0	paraequilibrium & Gmin edit Virtual species: 10 <u>Total Species (max 7000)</u> 45 <u>Total Solutions (max 200)</u> 0 <u>Total Phases (max 1500)</u> 17
	Final Conditions Year Yea	Equilibrium normal O normal + transitions transitions only O open • no time limit • Calculate >>

Fauilib - Results 800 C		_	ПХ	
Output Edit Chaw Bages	Final Conditions			
Output Eur Snow Pages	Enal Conditions			
🗅 🚔 🔛 🚮 🗍	T(C) P(atm) Energy(J) Quantity(mo	ol) Vol(litre)	n 💷 n 🦷 💢	
	EQUIL AMOUNT MOLE FRACTIC	N FUGACITY		
PHASE: gas real	mol	atm		· · · ·
N2	V 9.5000E+01 9.4965E-01	9.5001E-01	Final partia	I pressure of oxvden
H2	V 4.9994E+00 4.9976E-02	4.9991E-02		- p. c. c. c. c. j.
H2O	V 3.7039E-02 3.7025E-04	3.7026E-04		
NH3	V 4.0986E-04 4.0971E-06	4.0979E-06		
н	3.1242E-07 3.1231E-09	3.1242E-09		
NH2	3.3130E-11 3.3118E-13	3.3130E-13		
OH	8.9872E-12 8.9840E-14	8.9873E-14		
NO	V 8.6783E-14 8.6751E-16	8.6781E-16		
HNNH	3.1114E-16 3.1102E-18	3.1114E-18		
NH	1.1411E-16 1.1407E-18	1.1411E-18		
N2H4	9.4883E-18 9.4849E-20	9.4884E-20		
N2O	V 6.2157E-18 6.2135E-20	6.2152E-20		
HNO	5.7522E-18 5.7501E-20	5.7522E-20		
N	1.4265E-18 1.4260E-20	1.4265E-20		
°	6.0821E-19 6.0798E-21	6 08212-21		
02	V 2.3991E-21 2.3982E-23	2.3989E-23		
HOOH	1.1951E-21 1.1947E-23	1.1951E-23		
N3	4.9610E-22 4.9592E-24	4.96108-24		
HONO (g2)	1.99498-24 1.99418-20	1.99498-26		
HONO (=)	1.92098-24 1.92028-20	1.92098-26		
NO2	U 2 0404E-26 2 0262E-20	2 04047-20		
N2HEOH	T 7 2201E-27 7 2264E-20	7 22218-26		
HONO2	1 45928-27 1 45928-29	1 45988-29		
03	V 3 3353E-43 3 3340E-45	3 3357E-45		
NO3	4.8740E-44 4.8722E-44	4.8740E-46		
N203	1.1927E-46 1.1923E-48	1.1927E-48		
N204	7.1335E-60 7.1308E-62	7.1335E-62	Whor	the temperature of ic
TOTAL:	1.0004E+02 1.0000E+00	1.0000E+00		i ine iemperature ur ic
System component	Amount/mol Amount/gram	Mole fraction Mag	fraction 000	\sim
0	3.7039E-02 0.59260	1.8509E-04	2178E-04 -20°	U
N	190.00 2661.3	0.94947	99598	
H	10.074 10.154	5.0342E-02	8001E-03	
	N2H4	V 9.4763	-18 9.4669E-2	0 9.4703E-20
H2O_liquid(liq)	0	V 1.6505	-18 1.6488E-2	0 1.6494E-20
H2O_Ice(s)		17 1 40.00	10 1 40555 0	1 10007-00
NH4OH_liquid(liq)	11	V 1.4269	-10 1.4255E-2	U 1.4260E-20
NH4OH_solid(s)	02	V 1.7656	-20 1.7638E-2	2 1.7643E-22
	HOOH	V 8.7896	-21 8.7808E-2	3 8.7840E-23
	N3	V 4.9595	-22 4.9545E-2	4 4.9563E-24
	HONO (m2)	U 1 4672	-22 1 46575-2	1 46628-25
	HONO (g2)	V 1.40/2	-20 1.400/2-2	0 1.40025-25

Dew points – PO₂/T Relationship

Alloy Design 79

EX17-2. phase diagram PO₂ – T: Oxidation of Fe-1%Mn-1%Si

存 Data Search - Equilib 8.3	×
-Databases - 4/21 compound da	abases, 3/18 solution databases
Gact GactSage" S(FactPS □ FScopp □ B	Phase Diagram - Menu: last system − □ ×
✓ FToxid FSlead S FTsulf ✓ FSstel S FTsalt FSupsi S	File Units Parameters Variables Help T(C) P(atm) Energy(J) Quantity(g) Vol(litre) Image: Superscript (II) T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
FTmisc FThall FT0xCN	(gram) 02 + Fe + Mn + Si
☐ FTfrtz ☐ ELEM ☐ S ☐ FThelg ☐ S ☐ FTpulp ✓ FTlite ☐ S	Compound species Solution phases
FTdemo FTnucl 1	gas (ideal C) real * + Base-Phase Full Name O fixed activities Details gas (ideal C) real 0 I FSstel-Liqu LIQUID 0 ideal solutions
- Information -	aqueous 0 J FSstel-FCC FCC_A1 Pseudonyms pure liquids 0 I FSstel-BCC BCC_A2 apply Edit * + pure solids 100 I FSstel-HCP HCP_A3 Volume and physical prop data
FTlite FSstel FScopp FSlead SGTE	* - custom selection species: 100 + FSstel-CBCC CBCC_A12 + FSstel-CUB CUB_A13 C use only molar volume data C use only molar volume data
it is strongly recommended that you	Target Legend Target Target Target Target Virtual species: 44
Options - search for product spe Include co Default	- none - I - immiscible 18 I < Show (• all C) selected Total Species: (max 7000) 406 Estimate T(K): 1000 J · 3-immiscible 2 + - selected 17 Species: 306 Select Total Species: (max 200) 59 Total Phases (max 1500) 159
	Variables Phase Diagram T(C) log10(p(02)) Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si)
Cancel	500 1000 -40 -20 0.01 0.01 X
	FactSage 8.3

Alloy Design 80

GactSage[™]

EX17-3. Primary oxide formation diagram

Drawing of the diagram:

1) Collect all blue/red/green lines at different PO2 and superimpose them in one diagram.

2) The boundary of each color line (different phase) is the phase boundary of the primary oxide phase in the diagram.

Fe-Mn-Si at PO₂=10⁻²⁸atm, T=800°C

存 Phase Diagram - Menu: last sys	tem	– 🗆 🗙	
<u>File Units Parameters Variable</u>	es <u>H</u> elp		
	T(C) P(atm) Energy(J) Quantity(g) Vol(li	re) 👖 📑 🐺	
Components (4)			
	(gram) 02 + Fe + Mn + Si		
Products			
Compound species	Solution phases	Variables: O2-Fe-Mn-Si composition #1. vs composition	n #1. X
gas ideal C real 0 aqueous 0 pure liquids 0 ★ + pure solids 100 * - custom selection species: 100 Target - none - Estimate T(K): 1000	* + Base-Phase Full Name I FSstel-Liqu LIQUID J FSstel-FCC FCC_A1 I FSstel-BCC BCC_A2 I FSstel-HCP HCP_A3 + FSstel-CBCC CBCC_A1 + FSstel-CBC CBCC_A1 + FSstel-CBC CBCC_A1 + FSstel-CBC CBC_A13 + FSstel-M3S1 Me3Si1 + FSstel-M1S1 Me1Si1 Legend I Show (• all C) J - 3-immiscible 18 J - 3-immiscible 2 species: 306 + - selected 17 Show (• all C) Species: 306	Variables compositions 2 Y • compositions 2 A • • • B • • • • X,Y steps 11 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Ant Pressure or Volume P(atm) constant P(atm) constant O log P V(litre) log V total pressure isobars 1e-4 1e-3 0.0 0.1 ntity(g)
Variables		#1 log10(p/atm) constant 0 Fe +	1 Mn + 0 Si Y-axis 🔻
T(C) log10(p(02))	Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si)	02 • #1. 1 Fe +	$\frac{1}{1} Mn + \frac{1}{1} Si = 0.03 (max)$
800 - 28	0 0.03 0 0.03	gas-FactPS ▼ -28 □ #1 log10(composi	tion) 0 (min)
Mn/(Fe+Mn+Si) vs Si/(Fe+Mn+Si)			
FactSage 8.3		#2. 0 Fe + 1 Fe + I #2 log10(composition of the second of the sec	0 Mn + 1 Si ×-axis ▼ 1 Mn + 1 Si = 0.03 (max) tion) 0 (min) 0 (min) 0 K

EX17-3. Primary oxide formation diagram

EX17-4. Primary and Secondary Oxidations

Oxidation phase diagram

Oxidation phase diagram of the Fe-0.002%C-Mn-Si steel at 800°C

EX18. Remelting and oxidation of Zn galvanized steel

EX18-1. Interface reaction between liquid Zn and steel

Data Search - Equilib 8.3 Databases - 1/21 compound databases, 1/18 solution Cact GactSage" SGTE FactPS FScopp BINS FToxid FSlead SGPS rot from the formation of the fo	databases mly Private Database b c SGTEa	× I S i	FTlite database easonable Zn galvanizing. So nstead of FSS	e contains bath data for Zn- o, this is chosen tel.
Fisuir Fisceli State Fisalt FSupsi SGsold FTmisc FThall Other FTOxCN Fffretz ELEM FTfrtz ELEM SGrobi	Equilib - Menu: last system <u>File Units P</u> arameters <u>H</u> elp	T(C) P(atm) Ene	rgy(J) Quantity(g) Vol(litre)	- ×
FTpulp FT demo FT demo FT demo FT demo FTnuct TD nucl TD nucl TD nucl To	Reactants (4)	(gram) 100 Zn +	99.5 Fe + 0.5 Cr + Mn	
If database is stored on your PC but not listed here then you must - Options - search for product species Include compounds gaseous ions (plasmas) aqueous species imited data compounds (25C) Cancel Summar	Compound species gas C ideal real 0 aqueous 0 pure liquids 0 ↓ pure solids 32 species: 32 Target · none · E stimate T(K): 1000 Quantity(g): 0 Final Conditions	Solution phases Base-Phases I FTlite-Lique J FTlite-A1 I FTlite-A2 I FTlite-A3 I FTlite-A3 I FTlite-A12 I FTlite-A13 I FTlite-A13 I FTlite-A14 I FTLITE-A1	Se Full Name I Liquid FCC-A1 BCC-A2 BCC-A2 HCP-A3 HCP-Zn Prototype-Mg CBCC-A12 Prototype-Mg CBCC-A12 Prototype-Mg CBC-A13 Prototype-Mg CBC-A13 Prototype-Mg C14 Prototype-MgZn2 ✓ Show ● all ● selected species: 214 solutions: 27	Custom Solutions 0 fixed activities 0 ideal solutions Pseudonyms apply Edit Volume and physical prop data assume molar volumes of solids and liquids = 0 0 use only molar volume data use V & phys. property data paraequilibrium & Gmin edit <u>Total Species (max 7000)</u> 246 <u>Total Solutions (max 200)</u> 27 <u>Total Phases (max 1500)</u> 59 Equilibrium normal O normal + transitions transitions only O open
	FactSage 8.3			no time limit - Calculate >>

EX18-1. Interface reaction between liquid Zn and steel

EX18-2. Oxidation reaction of liquid Zn

存 Data Search	- Equilib 8.3		(1) Sotting oxygon partial prossure:
– Databases -	2/21 compound da	tabases, 1/18 solution databas	
Gact	GactSage" S	存 Equilib - Menu: last system	activity or log activity can be fixed
 ✓ FactPS FToxid FTsulf FTsalt FTmisc FThall 	FScopp FSlead FSstel FSupsi	File Units Parameters Help	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
FT FTrtz FT frtg FT helg FT pulp FT demo	ELEM		Solution phases Custom Solutions I FTlite-Liqu Liquid J FTlite-A1 FCC-A1 I FTlite-A2 BCC-A2 I FTlite-A3 HCP-A3
– Options - sea	arch for product sp	species: 65 Target - none - Estimate T(K): 1000 Quantity(g): 0	I FTIREA12 CBCCA12 Production I FTIREA13 CUB-A13 2 02(g). I FTIRE-C14 C14 Pro File Edit Press [Cancel] if the partial pressure is no longer fixed. Legend I FTIRE-C14 C14 Pro File Edit Press [Cancel] if the partial pressure is no longer fixed. I - immiscible 11 J - 3-immiscible 1 species: + Code -30 0 0.5 + - selected 2 (1) - a 2 02(g) FactPS gas
Default Canc	el	Final Conditions <a> Image: A interval of the steps Image: A interval of the steps	T(C) P(atm) ✓ A Cl(g) FactPS gas 1 900 1 ✓ FactPS gas 1 10 FactPS gas 1 900 1 ✓ FactPS gas 1 10 FactPS gas 10 10 FactPS gas 11 Zr(g) FactPS gas 11 11 Zr(g) FactPS gas 11 11 Zr(g) FactPS gas 11
		FactSage 8.3	permit selection of X species Help Suppress Duplicates Edit priority list : Show Selected Select All Select/Clear Clear OK

EX18-2. Oxidation reaction of liquid Zn

存 Equilib - Results a=1e-30 (page 1/61)	— C	X C				
Output Edit Show Pages Final Conditions						
□ 🖻 🕅 🗊 🗊 🕼 🖓 Axes: gram vs log10(activity) ×						
a=1e-21 a=3.16e-21 a=1e-20 a=3. Y-variable X-varia	able Swap Axes					
a=3.16e-26 a=1e-25 a=3.16e-25 a=1	T					
a=1e-30 a=3 16e-30 a=1e-29 a=3 16e						
Sixe-Y-axis						
(gram) 100% [Zn-liquid] + (log10(activity)					
+ 4.0305E-08 02 maximum 60	maximum U					
BCC-A2#1, selected as a dorr minimum	minimum -30					
BCC-A2#2, selected as a dorn						
0 mol gas_real tick every 5	tick every 5					
(900 C, 1 atm, (1.0000E-30	Plot Species Selection - Equilib Results	: gram vs log10(activity)				
+ 52 100 gram Liquid#1	File Show Select					
(52.100 gram, 0.81458 mol) Cancel	t tt Species	Gram (min) Gram (ma	/) Wt% (min)	Wt % (may)	Activitu (min)	Activitu (m 🔺
(900 C, 1 atm,	Gas Phase		() + C ~ (iiii)	HC.~ (IIIdA)	Activity (min)	Activity (iii -
(0.43578 wt.% ba		0 0	100	100	1.00005-30	1
+ 0.46843 wt.% Mn		Liquid	100	100	1.00002-00	
+ 7.7360E-08 wt.% 0	2 Γ	0 0.227044	6 2753E-06	0.435785	1 44975-19	2 38165-02
+ 87.266 wt.% Zn)	3 Fe	0 61635	6 7732E-02	99.482	5 9082E-13	0.612868
	4 Mp	0 0.244054	1 80095-02	30,996	1 37325.15	2 30435-03
System component Amount/mol	5 0	0 1.74575-0	7 73605-08	21.829	3.06325-26	3.06325-11
Zn 0.69540	6 7n	0 45.495	0.511972	00 429	5.00522-20	0.00022511
Mn 4.4424E-03	Light 2	Liquid	0.511373	00.423	3.36362-11	0.032033
Cr 4.3666E-03			2 50215 00	10.000	1 44075 10	2 20105 02
0 2.5191E-09		0 0	0.0321E-06	13.330	1.4437E-13	2.30105-02
+ 0 gram Liquid#2		0 0	6.7732E-02	53.475	0.9082E-13	0.612868
	9 Mn	0 0	1.8250E-03	04.789	1.3732E-15	2.3043E-03
+ 0 gram BCC-A2#1 (900 C l atm a=1.0000)		0 0	7.7360E-08	21.947	3.0632E-26	3.0632E-11
(0.18332 wt. % Cr			0.513343	87.266	5.9658E-11	0.892059
+ 62.684 wt.% Fe-alpha		FLU-AI	E 0000E 00	0.5407		
+ 0.50769 wt.% Mn		1.7529E-2	5.9909E-29	3.5407	2.0702E-19	3.4009E-02
+ 36.625 wt.% Zn	¹³ Fe-gamma Settin	a X-axis 🕂 2.2085E-0	1.5977E-12	99.682	9.6005E-13	0.995871
+ 1.3295E-15 wt.% CrO3		977 0,10				<u> </u>
+ 4.3958E-13 wt.% FeO3						
	Y: gram X: log10(activi	ity) Display Mass	Order	Select Top	15	
	select species - enter one species	# C	integer #			ecies selected
	use "+" column	source , mole	💭 mass (max)	ignore spec	ies and	
	Clear	Gram	fraction (max)	phases with	n zero mass	OK
			 activity (max) 	Select		
	Click on the '+' column to add or remove spe	ecies. [page] 61 pages				

Alloy Design 92

EX18-2. Oxidation reaction of liquid Zn

EX19. Carburization and Decarburization of Steel

Fquilib - Reactants		- 🗆 X
<u>File Edit Run Macro Table Units</u>	<u>D</u> ata Search Data Evaluation	<u>H</u> elp
🗅 🗃 🕂 📖	T(C) P(atm) Energy(J) Quantity(g	
Image: Provide the control of the c	Species Phase Phase Next >> abases Solution: 1/18 database	gi Vol(kre) Image: Streamit Data Image: Streamit Data CO / CO2 is variable Image: Streamit Data Image: Streamit Data Image: Streamit Data<
		0 1 0.01 1200 1 C transitions only C open 10 steps Table 101 calculations - no time limit · Calculate >>
		FactSage 8.3

EX19. Carburization and Decarburization of Steel

Equilib - Results A=0 (page 1/10))1)		– 🗆 X					
Output Edit Show Pages Final C	Conditions							
Save or Print As	T(C) P(atm) Energy(J) Quantity(g)	Vol(litre)	111 💷 🦱 👿					
Repeat Save	A=0.17 A=0.18 A=0.19 A=0.2 A=0.2	1 A=0.22 A=0.23	A=0.24					
Plot	Plot Results	A=0.1	11 A=0.12					
Fouilib Results file	Repeat Plot - gram vs log10(activit	1	Frank Gran D. D.					
Stroom File	Plot: gram vs. Alpha	y)	FactSage 8.3	~				
Sueam File >								
Format	<u>File H</u> elp	Eile	le <u>Show</u> Select	is. grain vs log ro(Alpha)				
Fact-XML >	99.62 Fe + 0.	08 C + 0.2 Mn +	+ # Species Gram (min)	Gram (max) Wt.% (min)	Wt.% (max) Activity (min)	Activity (max)	-	
Eact_Optimal	Axes Variables	Min	41 GAS 27.843	44.166 0	0 1	1		
	activity		42 FCC 99.843 43 BCC 0	0 0	0 0.985282	0.994324		
Fact-Function-Builder >	Aves: gram vs. Alpha		44 Fe_GAS 5.0991E-06	7.7525E-06 1.3133E-05	1.8321E-05 0	0		
Refresh	Vueriable Vueriable Sum Au		45 Mn_GAS 6.2074E-05 46 Si_GAS 7.5835E-05	6.7131E-05 1.5200E-04 7.7281E-02 2.7236E-04	2.2691E-04 0 0.174978 0	0		
Swap Joons	<u>1</u> -variable <u>A</u> -variable <u>S</u> wap Ax		47 0_GAS 15.999 48 C_GAS 11.844	31.998 57.463 12.091 27.375	72.45 0 42.537 0	0		
Swap 100ps	-Y-axis	-X-axis	49 Fe_FCC 99.62 50 Mn_FCC 0.199933	99.62 99.454 0.199938 0.199605	99.777 0 0.200247 0	0		
+ 9.7324E-13 + 1.2613E-13	gram	Alpha	51 Si_FCC 2.2719E-02 52 0_FCC 1.0943E-07	9.9924E-02 2.2754E-02 4.6652E-04 1.0924E-07	9.9809E-02 0 4.6726E-04 0	0		
+ 2.6199E-14			53 C_FCC 1.0768E-06	0.247126 1.0785E-06	0.246714 0	0		
+ 3.8455E-15 + 2.0591E-15	maximum 0.3	maximum 1	55 Mn_BCC 0	0 0	0 0	0		
+ 3.6224E-19	_ minimum 0	minimum 0	00 00000 0	Dialas Ha				
+ 3.1647E-22	tick every	tick every 01			mole C integer #	Select Top 15	1 species selected	
+ 9.5268E-23			Clear C					
+ 5.7591E-23 + 1.0751E-23			Click on the '+' column to add or remove s	species. [page] 101 g	pages	Select		
+ 7.8361E-24	Cancel Befre	sh	ΠΚ	101				
+ 7.2598E-24 + 3.5764E-29								
+ 3.2144E-30	area 1 selected Display							
+ 2.1737E-30 + 2.1296E-31		size: 9 n	no: 4 🔽 color	🔲 full screen				
	Alpha Select	C chemica	alcolors	C Viewer				
+ 100.17 gram FCC_A1 (100.17 gram, 1.7911 mo		C integer \$	# reactants	Figure				
(1200 C, 1 atm,	Axes Repeat	C none	I rile name					
		offset	Plo	ot >>				
			[
	FactSage 8.3 C:\FACTSAGEWS\E	.quiU.res	02Jul	23 101 sets				
Gact Sage [™]		Alloy Des	sign 95		WW	w.factsa	ge.com	

Alloy Design 95

Alpha

Alloy Design 96

EX19. Carburization and Decarburization: Composition target

99.62 Fe + 0.08 C + 0.2 Mn + 0.1 Si +

C:\FACTSAGEWS\Equi0.res 02Jul23

Alloy Design 98

EX20-1. P reduction in high purity Si using vacuum

•												
🗣 Data Search							بابر مم				ahaaa	
– Databases -	2/26 compou	nd databases	1/26 solution databas			<u>raci5a</u>	ge un	<u>irapure</u>	SIIICO	n uai	apase	
Gact	GactSage"	SGTE	compounds only	Priva	nte Databas	This is a	specia	al databa	ase fo	r high	purity	Si
			no database			product	lon					
FT salt						·						
FTmisc	FSupsi	C Sasoia	Clear All									
FT0xCN		Other	Add/Remove Data	Caller C	ilib - Reactants	Data Garanta Data	F	11-l-			_	×
FThelg		SGnobl	<u>File</u> <u>E</u> dit <u>Table</u> <u>U</u> nits			Data Search Data Evaluation Help						
		D SPMCBN	RefreshDatabases		; + 🔳	TĮ	C) P(atm) Ene	rgy(J) Quantity(g) V	(ol(litre)		III 🖳 🕒	\ <u></u> };
🔲 FTlite	FTnucl	TDnucl		1 - 4	1							
- Information					1							1
					Quantity(g)	Spec	cies	Phase	T(C)	P(total)**	Stream# Data	
					98	Si			Ψ		1	
				+	1	В	— r		-		1	
				+	1		[1	
Ontinno on	arah far aradu	at anapias			I							
- uptions - se	arcn ror produ – Incl	ude compounds -	Lim	+ nits	1	Ar			T		1	
Defaul		gaseous ions (pla aqueous species limited data comp	ismas) Org iounds (25C) Mini	anio imu								
Cano	el		Summary									
											nitial Conditions	
												_
								Next>>				
									_			
				FactSag	e 8.0 Compound:	2/26 databases	Solution:	1/26 databases				11.

Fig. 1. B concentration changes in H₂-H₂O blowing determined by the resistivity meter

JOM, JOURNAL OF THE MINERALS, METALS AND MATERIALS SOCIETY Volume 64, Number 8 (2012), 952-956

EX21. Heat balance: very important for industrial process

How much heat is required to increase temperature from T1 to T2 ? If we add or remove a certain amount

of H from mixtures of materials, what would be final temperature ?

\rightarrow Good for

- a) Furnace capacity design
- b) Heat balance calculation for alloying or fluxing of materials to melt bath
- c) Calculate exothermic or endothermic heat generated during explosion
- d) Process simulation for temperature change

Heat of Dissolution

actSage[™]

Alloy Design 106

Use two stream

Alloy Design 107

GactSage[™]

Alloy Design 108

EX21-2. Heat balance: Cooling of AZ91 from 600 to 300°C

🕼 Equilib - Reactants		- 🗆 X	
<u>F</u> ile <u>E</u> dit <u>R</u> un Macro <u>T</u> able <u>U</u> nits <u>D</u> ata Search Da	ta Evaluation <u>H</u> elp		
□ 🗃 🕂 🎹 T(C) P(atm) End	erov(J) Quantitu(n) Vol(litre)		
1.2	Equilib - Menu: last system		- U X
1.3	<u>File Units Parameters Help</u>		
		T(C) P(bar) Energy(J) Quantity(g) Vol(litre)	🎁 🖳 🔁 🐨 🔤
Quantity(g) Species	Reactants (3)		
90 Mg St	D	(aram) 90 Mg + 9 Ål + Zn	
+ 9 AI S			
+ 1	Products		
	Compound species	Solution phases	Custom Solutions
		× + Base-Phase Full Name ▲	0 fixed activities Details
		I Filite-Liqu Liquid	
	Dure liquids	I FTite-62 BCC-62	apply Edit
	* + pure solids 35	I FTIIte-A3 HCP-A3	Volume and physical prop data
		I FTlite-A3" HCP-Zn Prototype-Mg	 assume molar volumes of assume disuida
	* - custom selection	I FTlite-A12 CBCC-A12 Prototype-Mn	Solids and liduids = 0 C use only molar volume data
	species. 55	I FT lite-C14 C14 Prototype-MgZn2	C use V & phys. property data
		I FTlite-C15 C15 Prototype-MgCu2 💌	paraeguilibrium & Gmin edit
	- Target	Legend	
	Estimate T(K): 1000	J - 3-immiscible 1 appoint 142	Total Species (max 7000) 178
	Quantitu(a): 0	+ - selected 6 solutions: 29 Select	Total Solutions (max 200) 29
	country(g). jo		Total Phases (max 1500) 64
	Final Conditions		E quilibrium
	<a> 	T(C) P(bar)	normal O normal + transitions
FactSage 8.3 Compound: 2/21 databases Solution:		600 1 0	D transitions only 🔿 open
	10 steps 🗖 Table	1 calculation	- no time limit - Calculate >>
	FactSage 8.3		1

Stream : AZ31 alloy at 600 °C

100% [AZ91-600C] C:\FACTSAGEWS\Equi0.res 03Jul23

Alloy Design 111

EX22-1. Thermodynamic properties: Activity, ΔG , ΔH , ΔS etc.

存 Equilib - Reactants		- • ×
<u>File Edit Run Macro Table Units Data Search Data</u>	a Evaluation <u>H</u> elp	
T(C) P(bar) Energ	gy(J) Quantity(g) Vol(litre)	
1 - 2 Quantity(g) Species	Phase T(C) P(total)**	Stream# Data
<1-A> Mg liqui	id	system - X
+ <a> Si liqui	id File Units Parameters	rs Help
	Reactants (2)	T(C) P(bar) Energy(J) Quantity(g) Vol(litre)
		(gram) <1-A> Mg + <a> Si (1600C,liq,#1) (1600C,liq,#1)
	Compound species	Solution phases Solution phases Solution phases Custom Solutions O fixed activities Details
** P(total) is the hydrostatic p For a gaseous stream t partial pressures of the sp	pressure above the p this is the sum of the species in that stream	eal I FTlite-Liqu Liquid U ideal solutions 0 J FTlite-A1 FCC-A1 Pseudonyms 0 I FTlite-A2 BCC-A2 apply Edit 23 I FTlite-C1a aC1 Prototype-CaF2 volume and physical prop data J FTlite-C1a aC1 Prototype-CaF2 solids and liquids = 0
	species	23 I FTlite-C15 C15 Prototype-MgCu2 Use only molar volume data O use V & phys. property data
N FactSage 8.3 Compound: 1/21 databases Solution:	Target 1/18 databases Guantity(g):	Legend I - immiscible 5 Show • all • selected I - immiscible 5 J - 3-immiscible 2 Show • all • selected Select I - india Species (max 7000) 70 Image: Control of the select of t
	Final Conditions <a> 0 1 0.01 10 steps	T(C) P(bar) Delta H(J) € quilibrium 1600 1 © normal C normal + transitions able 101 calculations • no time limit • Calculate >>
	FactSage 8.3	

GactSage™

Alloy Design 113

EX22-2. Iso-activity line in ternary system

Calculation of iso-activity line of Mg(l) in the Mg-Si-Sn system at T=1350 K

Now you can easily calculate iso-activity lines in "Phase Diagram" module (FactSage70)

File Edit Run Macro Table Units Data Search Data Evaluation Help File Edit Run Macro Table Units Data Search Data Evaluation Help T(K) P(atm) Energy(J) Quantity(mol) Vol(litre) 1-3 1-4 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-4 1-5 1-6 1-1 1-1	scan $X_{Mg} = 0.3$ from left to right of this triangle and ask FactSage to find out composition for activity of Mg(I) = 0.1
Image: Constraint of the system - File Units Parameters Help Image: Constraint of the system T(K) P(atm) Energy(J) Quantity(mol) Vol(litre) Reactants (3) -	Mg=0.3
FactSages Product Comport aqueous + pure liquids +	Details Image: Contract of the second se
(1) Click mouth right button on "pure lic(2) Click "+" button to (3) setup activity	uids" → [^{0.1}] If element (this case is for Mg)

存 Equilib - Results A=0 (page 1/71)		_		\times					
Output Edit Show Pages Final Conditions									
🗅 🚘 🖼 🚮 👖	itre)	13	1 🗣 🖱						
A=0.13 A=0.14 A=0.15 A=0.16 A=0.17 A=0.18 A=0.19 A=0.2 A=0.21 A=0	0.22 A=0.23	3 A=0.24							
A=0 A=0.01 A=0.02 A=0.03 A=0.04 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09	A=0.1 A	=0.11 A=0.1	12						
	o 117		0.0	_					
0.3 Mg + <a> Si + <0.7-A> Sn =	Spreadshee	t Setup					×		
+ 0.38455 Mg_liquid	System P	roperties		Property onlympa D					
1.3846 Output				Property columns	•				
(99.735 grade Page Range Type of Output	Variabl	in: - I le: Alph	- na						
(C All 71 pages C Printer Printer setup									
+ C Current page 1 C Text file (* tvt)									
Sys C Equilib Results File (Equi*.res)	- Species F	Properties	-		Speci	ies Columns:	: 1		
Sn Mg	Columns p	per species 1	- ord	er species (• order	props.		a		
+ 0	Col Var	Spread	sheet - Equi	lib Page 71/71 ·	T(K) = 1350 P(atm	1) = 1 Alpha = 0.7			— П
+ 0 C Open Text Spreadsheet Sprea		Filo Edit	Show S	alact Stable	(it) 1000, i (aan	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		File Eur	511010 51	elect Stable	_			4	
+ (Selected: 3/	/102	Spreadsheet Specie	1050 D(-)	[/]	Pages:	711	- <u> /1</u> ⊻ [pa
+ 0 Cancel	OK			Page / 1//1 : 1(K) =	= 1350, P(atm) = 1, A	Npna = U.7 [min = U at p.	. 1; max = 0.7 at p.	0.71	Manimum
+ 0		26	Mg4Si8(:	s) FTlite	U3_Inma	V 9.4741E-09	0 [1]	_	9.4741E-09 [71]
(0.68317 Mg2Va		27	Sn(s)	FTlite	bct_A5_tl4_l41/	V	0 [71]		9.7513E-02 [1]
+ 0.31683 Sn2Va)		28	Sn(s2)	FTlite	fcc_A1	0 V	0 [71]	Α	B B
+ 0 mol HCP-A3#2		30	Sn(s3)	FTlite	dhcp	V	0 (1 A	Alph	a X-Mg(Liqu#1
		31	Sn(s5)	FTlite	tetragonal_alpha	V	0 [2	0	0.49442231
		32	Mg25n(s	j Filite	LI_prototype_L	0	013	0.01	0.4965987
		+ 33	Mg	FTlite	FTlite-Liqu#1	0.1000	0.10 4	0.02	0.49864526
Save reculte in excel		+ 34	Si	FTlite	FTlite-Liqu#1 FTlite-Liqu#1	0.3547		0.03	0.50056884
Save results in excer			011	Trate	T THE EIGHT		7	0.04	0.5040713
or spread sheet form		36	Mg	FTlite	FTlite-A1#1	4.7683E-02	4.7683 8	0.06	0.50566086
or spicad sheet form		37	Sn	Flite	FTlite-A1#1	0.1274	0 9	0.07	0.50714892
							10	0.08	0.50853965
		39	Mg	FTlite	FTlite-A2#1 FTlite-A2#1	6.8450E-02	6.8450 11	0.09	0.50983681
		40	Sn	FTlite	FTlite-A2#1		0 [12	0.1	0.51104378
		40	M-244	ET P	ETR- A 2011	4 01205 02	13	0.11	0.51216363
		42	Mg2Va	F l lite	Filite-A3#1	4.9120E-03	4.9120 14	0.12	0.51319912
		+ denote	s all the Spec	ies Properties as del	ined in the Spreadsh	ieet Setup.	16	0.13	0.51502657
				Select All		Clear	17	0.15	0.51582268
			_				18	0.16	0.51654274
							19	0.17 0.51	718825

EX23. Calculation for Solidus lines (Solidus projection)

Phase Diagram - Menu: last system	- D X
Eile Units Parameters Variables Help Image: Constraint of the state of the st	Calculating a polythermal projection – the first melting surface
Components (3)	+ Zn
Products Compound species (1) Lution phases gas © ideal © real 0 IF FTlite-Liqu aqueous 0 J FTlite-A1 pure liquids 0 I FTlite-A2 + pure solids 35 I FTlite-A3 species: 35 I FTlite-A12 rarget - none - Estimate T(K): 1000 I Estimate T(K): 1000 0.3 0.3 s (2) ables T(C) Al/(Mg+Al+Zn) Zn/(Mg+Al+Zn) s 500 1000 0.3 0.3 0.3 Al/(Mg+Al+Zn) FactSage 8.3 FactSage 8.3 FactSage 8.3 FactSage 8.3	Full Name 0 fixed activities Details (2) bles: Mg-Al-Zn- composition #1. vs compositio
	Cancel

This is new feature in Phase diagram.

- Liquidus projection: plotting Liquidus in the temperature range with a certain interval ("O" option should be required for Liquid phase)
- Solidus projection: plotting Solidus in the same way as liquidus projection
 - ("F" option should be required for Liquid phase)

Alloy Design 120

EX23. Calculation for Solidus lines (Solidus projection)

Alloy Design 121

EX24. Non-metallic Inclusion formation during metal solidification

	nical Test	Summary	,								
	Weld	С	S	Р	Mn	Si	Al	Ni	Tì	0	Ν
	High-aluminum E70T-4	0.234	< 0.003	0.011	0.50	0.28	1.70	0.02	0.003	0.006	0.064
🕼 Data Search - Equilib 8.3	Low-aluminum E71T-8	0.149	< 0.003	0.005	0.64	0.30	0.53	0.01	0.058	0.030	0.033
- Databases - 3/21 compound databases, 2/18	solutions only	🕞 Equilib - M	lenu: last systen	n						- 0	×
Image: State of the state o	no database	Reactants	(11)	εiμ	T(C) P(b	ar) Energy(J)	Quantity(g) V	'ol(litre)		111 🖳	
FTmisc FThall FT0xCN FTfitz ELEM SGnobl FThelg SpMCBN FTpulp FTlite TDmeph	d/Remove Data	(gram) 98.2	255 Fe + 0.	149 C + 0	0.02 S + 0	0.005 P + 1	0.64 Mn +	0.30 Si +	0.53 Al +	0.01 Ni + (0.058 Ti
Information - Click on a box to include (or exclude) a database in the compound and solution database (when available) will b (note, this is NOT recommended).	data search. Normally databases se selected. To 'uncouple' a data	gas (*) aqueou pure liq * + pure so	ideal Creal ıs uids lids 2	0 0 0 297	+ Bas I FS J FS I FS FS	e-Phase stel-Liqu stel-FCC stel-BCC stel-HCP	Full Na LIQU FCC_ BCC_ HCP_	A1 A2 A3	- Pseudo app - Volume	al solutions	dit rop data- nes of
If database is stored on your PC but not listed here then	you must 'add the database to th	* - custom se	election species: 2	297	+ FSs + FSs FSs FSs	tel-M23C tel-M23C tel-M7C3 tel-CBCC	M230 M70 CBCC	C6 C3 A12	C use	s and liquids = 1 only molar volur V & phys. prope) me data rty data
Options - search for product species Include compounds gaseous ions (plasmas) aqueous species Imited data compounds	Limits) Organic species (s (25C) Minimum solution	Transitions - Number (transition	temperature of s: All 💌	Lege I · im J · 3· + · se	end miscible 2 immiscible 1 elected 2	▼ SI	how 🕶 all (species: 17 olutions:	C selected	Total Spe Total Sole Total Pha	equilibrium & Gir ecies (max 7000 utions (max 200 ases (max 1500	in <u>edit</u>)) 469)) 9) 306
Cancel	Summary	Final Condi	Kions (B>	2500	T(C) 1000 100	P(bar) 1	Product	H(J) 🔽	C normal C transitions	• normal +	ransitions
		10 steps	Table				16+ ca	alculations	- no time lim	it · Calcul	ate >>
	LE LE	actSage 8.3									//

GactSage™

Alloy Design 123

EX24. Non-metallic Inclusion formation during metal solidification

	С	Si	Mn	Al	Ni	S	Ti	0	Ν	
	0.06	0.30	1.31	0.006	1.82	0.006	0.023	351ppm	115ppm	
存 Data	Tota Search - Equilib 8.3									
Data	Search - Equilib 8.3 bases - 3/21 compound act	databases, 2/18 soluti SGTE BINS SGPS SGSOID SGSOID Clear Cher SGnobl SpMCBN TDmeph TDmcl de) a database in the data se when available) will be seled at not listed here then you more species e compounds aseous ions (plasmas) queous species nited data compounds (25C) Sum	on databases	uilib - Menu: last sy Inits Parameters Ctants (10) ram) 96.109 Fe lucts npound species gas C ideal C re aqueous pure liquids pure solids sustom selection species: get ne - Stimate T(K): 1000 Quantity(g): 0 I Conditions	ystem Help + 0.06 C + 0.0 Soluti a 0 0 234 234 234 Lege I - im J - 3- + - se	T(C) P(bar) Ener T(C) P(bar) Ener T(C) P(bar) Ener T(C) P(bar) Ener T(C) P(bar) Ener T(C) P(bar)	gy(J) Quantity(g) Vo + 0.3 Si + 0.0 e Full Nat LIQUIC FCC_A BCC_A BCC_A HCP_A CEMENT CEMENT CEMENT CEC_A M7C3 CBCC_A W Show (all C species: 1123 solutions: 108 ▼ Product H	I(litre) 06 AI + 1.82 Ni me A 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 0.023 Ti + ustom Solutions i fixed activities i ideal solutions seudonyms apply [] Ec blume and physical p assume molar volum solids and liquids = (use only molar volum solids and liquids = (solids and liquids = (so	X 351E-4 0 atails etails etails tit rop data rop data rty data in edit 1357 108 342 ransitions
			10	steps 🗖 Ta	2300 ·	1000 10	 [131 cal	C trans	sitions only Co me limit - Calcul	ate >>
			FactSag	je 8.3						

Paraequilibrium (Partial equilibrium) vs Orthoequilibrium (Fully equilibrium)

EX25-1. Paraequilibrium: Steel A3 temperature

存 Phase Diagram - Menu: last syst	tem	– 🗆 X			
File Units Parameters Variable	es Help				
	T(C) P(atm) Energy(J) Quantity(g)	Vol(litre)			
Components (3)	(gram) Fe + C + Mn]			
Products					
Compound species	- Solution phases	Custom Solutions			
gas ⊚ ideal C real 0	* + Base-Phase Full I FSstel-Liqu LIG	Name O fixed activities Details O ideal solutions			
aqueous U	I FSstel-FCC FCL				
pure inquitas 0		P A2 apply I apply and physical prop data a			
I+ pure solids	+ ESstel-CEME CEME	NTITE assume molar volumes of			
	+ FSstel-M23C M2	solids and liquids = 0			
species: 16	+ FSstel-M7C3 M	7C3 use V & phys. property date			
	+ FSstel-CBCC CBCC	C_A12			
Target	Legend				
- none -	I - immiscible 4	Total Species (max 7000) 64			
Estimate T(K): TUUU	+-selected 6 species:				
	solutions:	Paraequilibrium diffusing elements	×		
T(C) C/(Fe+C+Mn)	Mn/(Fe+C+Mn)	Enter the list of elements that can diffuse.	OK		
500 1000 0 0.02	0.02				
		To calculate the phase with the minimum G, enter a	Cancel		
T(C) vs C/(Fe+C+Mn)		blank line.			
FactSage 8.3		Select from: Fe Mn C			
		C			

EX25-2. Paraequilibrium: Rapid solidification for amorphous metal

存 Phase Diagram - Menu: last s	ystem	- 🗆 X						
File Units Parameters Varia	bles Help							
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	III 🕩 🕒 🐨						
Components (2)								
	Cu + Zr							
Products								
Compound species	Solution phases	Custom Solutions						
	* + Base-Phase Full Name	0 fixed activities Details						
gas 🖸 ideal 🗘 real 🛛 0	+ FTlite-Liqu Liquid	U ideal solutions						
aqueous 0	+ FTlite-A1 FCC-A1	Pseudonyms						
pure liquids U	Paraequilibrium diffusing elements							
J+ pure solids 20	sume molar volumes of							
	Enter the list of elements that can diffuse.	OK lids and liquids = 0						
species: 20	To calculate the phase with the minimum G, enter a	Cancel e V & phys. property data						
	blank line.	Cancer e v a priys, property data						
Target	Select from: Zr. Cu	aequilibrium & Gmin edit						
- none -		species: 1						
Estimate T(K): 1000	l.							
	solutions: 4	Jolutions [max 200] 4						
		Total Phases [max 1500] 24						
Variables Phase Diagram								
T(C) Zr/(Cu+Zr)								
0 2000 0 1								
T(C) vs Zr/(Cu+Zr)								
FactSage 8.3		11						

Blank \rightarrow no diffusion of any element: this is what happens during rapid solidification

