Ferrous Applications II

Ferrous Processing 1

Contents

#	Application examples	Slide #
EX-A1	Slag liquidus temperature changing with additional slag component	<u>3</u>
EX-A2	dissolution mechanism of inclusion into molten slag	<u>11</u>
EX-A3	Non-metallic inclusion formation: oxide metallurgy	<u>14</u>
EX-A4	Inclusion control in Mn/Si killed steel	<u>18</u>
EX-A5	Reoxidation of steel - inclusion modification	<u>27</u>
EX-A6	Deoxidation diagram / Inclusion stability diagram	<u>39</u>
EX-A7	Inclusion in Al-killed Ti bearing steel	<u>45</u>
EX-A8	Refractory dissolution in molten slag (RH degasser)	<u>59</u>
EX-A9	Ladle glaze formation	<u>64</u>
EX-A10	Thermal stability of Refractory	<u>69</u>
EX-A11	Refractory / liquid inclusion interaction	<u>71</u>
EX-A12	Refractory / Steel interaction	<u>75</u>
EX-A13	Desulfurization of hot metal and sulfide capacity calculation	<u>81</u>
EX-A14	Heat evolution during slag cooling and heating: Enthalpy diagram	<u>134</u>
EX-A15	New private compound database	<u>142</u>
EX-A16	Addition of ideal solution (private solution)	<u>146</u>
EX-A17	Addition of new component into slag (Henrian solution)	<u>149</u>
EX-A18	V2O3 addition to liquid slag (Henrian solution: optimization of parameter)	<u>154</u>
EX-A19	Zn galvanization: control of oxidation in annealing furnace	<u>166</u>
EX-A20	Zn galvanization: remelting and oxidation of Zn galvanized steel	
	interface reaction between liquid Zn and solid steel	<u>181</u>
	oxidation reaction of Zn coating	
EX-A21	Carburization and de-carburization of steel	<u>187</u>
EX-A22	Structure of molten slag: bond fraction	<u>192</u>
EX-A23	Viscosity of slags: Einstein-Roscoe Equation for semi-liquid state	<u>196</u>

The effect of SiO_2/MgO and FeO and AI_2O_3 in Slag on the liquidus temperature of the Slag Phase Diagram / Equilib

Actually, SiO₂/MgO of Laterite is almost same as that of the produced Slag The main system of Slag is virtually SiO₂-MgO-Al₂O₃-FeO

存 Phase Diagram	- Components	;					_		×
<u>F</u> ile <u>E</u> dit <u>U</u> nits	<u>D</u> ata Search	Data Evaluation	<u>H</u> elp						
🗅 🗃 +		T(C) F	(atm) Ener	gy(J) Quantity(g)) Vol(litre)		1	11 🖳 🖪	漸
1.5 Note: - or diagram the will be g, bul formulae of th remain m	the phase units of mass the chemical he components olar values.	Fe-sat	Com SiO2 FeO Al2O3 Fe	ponents iON COP) Vol(litre) Dditic ohase diagra diagram with diagram with diagram with	SN am (default) a molalities, and h 2 cations and uent diagram	iso-Eh & iso 12 anions	o-pH lines	
				lout >>					
				0.000.1.1.1					
FactSage 8.0 Co	mpound: 2/	23 databases	Solution:	2/23 databases	S				11.

Ferrous Processing 4

C Se	election	- Phase Diagram	- no resul	ts -				—	×			C	50	loct	nu	ure solid a	nd li	i ur	d of	
File	Edit S	how Sort													Pu			qui		
Select	ed: 41/9	7 SOLID	Duplicates	selected. X	denotes	species exclud	led by default					F	F۵	for l	Fe	-saturatio	n coi	ndit	ion	
				• r	io results	•			_	1		•				outuratio		IMI		
+	Code	Species	Data	Phase	TV	Activity	Minimum	Maximum	-	1										
× ×	49	5102(\$4) Si02(\$5)	FSstel	Fristobalite(I)	V				-	rrous	s App	plicati	ons	2 p8 phase	diagr	ram		_		\times
X	51	SiO2[s6]	FSstel	Cristobalite(h)	V															
X	52	SiO2(s7)	FSstel	coesite	V					iable	es l	<u>H</u> elp								
X	53	SiO2(\$8)	FSstel	stishovite	V								TICL	P(atm) Ene	and (1)	Quantitu(g) Vol(litre)			UN 🗔	👝 Dard 👝
	54	Mg2Si(s)	FSstel	cF12-Fm(3)m	V					1			1(0)	r (dan) Ene	199(0)	gaanay(g) voi(iac)			m 🗩	
+	55	Fe(s) Fe(s2)	ESistel	BUL_AZ	0				-											
	57	FeO(s)	FSstel	Wustite	V															
X	58	Fe2O3(s)	FSstel	hematite	V							forar	1 63	02 · Eal	<u> </u>	Ma0 / Al202 / Ea	7			
X	59	Fe2O3(s2)	FSstel	High-Pressure-H	V							(yiaii	ij Si	UZ + FE	0 +	Mg0 + Al203 + Fe				
×	60	Fe2O3(s3)	FSstel	High-Pressure-H	I V				_											
×	61	Fe304(s)	FSstel	Magnetite	V				_											
lâ -	62	Fe304(s2)	Fostel	Magnetite	V				-]							- C - 1	C - L - K		
	permit sel	lection of 'X' species	Help	Suppress Du	plicates	E dit priorit	ty list :				120	iliadori p	JIIIasi	es				om Solut	ons De	taile
		1		1		1						* +	·	Base-Phas	e	Full Name	▲ Un	ked activ	ities	como
	Show	v Selected	Select Al	I Se	lect/Clea	ər	Clear	OK		0		1		FSstel-Liqu	. L	LIQUID	0.0	leal solui	ions	
								21112		0		J		FSstel-FCC	:	FCC_A1	- Pseu	donyms		1
							* + pure	liquids		2		1		FSstel-BCC	:	BCC A2	а	poly [Edi	t
							* Dure	solids		41		i	-	ESstel-HCE	5	HCP A3	Volu	ne data-		
							It pore	001100					-	FC at al DCC	2			sume ma	lar volume	esof
							* - custom	selection					-	FOSTEPBLU	2	BUU_BZIBUU_AZ	(• so	lids and	liquids = 0	
		Disease Diseases							~	43		+	·	FSstel-DIAN	М	Diamond_A4	_ in	clude ma	lar volume	data
•	selection	n - Phase Diagram	- no resu	iits -				— L	X			+		FSstel-TAU	5	Tau5_Al8Fe2Si1	`ar	id physic	al properti	es data
File	Edit	Show Sort										+		FSstel-TAU	6	Tau6_Al5Fe1Si1	✓ □ □ □ □	a a guilibr	ium & Groin	L selà L
Selec	ted: 1/12		Duplicate	es selected.	denote:	s species exclu	uded by default			_	-Le	eaend-			_) par	aequilibi	unie unii	
					no result:	s -				٦ I	1.	immisc	ible	9	I ∼ 5	how 💌 all 🕔 selected	Virtual	species:	50000	00
+	Code	Species	Data	Phase	TV	Activity	Minimum	Maximum		í I	j.	- 3-imm	iscib	le 1			<u> I otal S</u>	pecies	max 5000	299
	4	Mg(liq)	FSstel	liquid	V						+ -	 select 	ted	17		species: 206 Select	Total S	olutions	(max 200)	38
X	5	MgO(liq)	FSstel	liquid	V										21	olutions: 38	- Total F	'hases (r	nax 1500)	81
<u> </u>	6	Al(liq)	FSstel	liquid	V				-											
×	0	Al2U3[liq]	FSstel	liquid	V				-								⊢ Phase D	iaoram		
X	9	SiO2(lia)	FSstel	liquid	V					FeO	E Fel	07(SiO)2+E	eO Al2	203/	Fe/(Si02+Fe0	5i02			
+	10	Fe(liq)	FSstel	liquid	0						<u> </u>					101(01021100				
	11	FeO(liq)	FSstel	liquid	V							01	1) 0((min)	0.0001 (min)	100	Sec.		
×	12	Fe304(liq)	FSstel	liquid	V												- no time	limit -	Calcula	1
	13	MgU(liq)	Floxid	liquid	V												- no une	in nic -	Calcula	
	15	SiO2(lia)	FToxid	liquid	V										- 16	ecommend you not select	both pure lia	ids and	molten soli	utions -
		(·		1.1	de c	001		A K K K	-0.44	500 -k				
										/orks	snopa	su/Ferr	ous	Applications\	\p8_1	ouu.phas				1
	permit se	election of X' species	Help	Suppress D	uplicates	Edit prior	ity list :													
	Sho	w Selected	Select A	All S	elect/Cle	ar	Clear	ОК												

Variables: SiO2-FeO-MgO-Al2O3-Fe composition #	 vs composition #1. 	×		
Variables T and P Y C compositions A C log10(a) C A B C Next >>	Constant Con	2 p8 p	ohase diagram n) Energy(J) Quantity(g) Vol(litre)	
X.Y steps [1]	0 Al203 + 0 Fe 0 Al203 + 0 Fe = 1 (max) 0 (min)	D2 Base FSst FSst FSst FSst FSst FSst	+ Fe0 + Mg0 + Al203 + Fe Phase Full Name Liquid Liquid <thliquid< th=""> Liquid <thliquid< th=""></thliquid<></thliquid<>	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume data assume molar volumes of solids and liquids = 0 include molar volume data and physical properties data paraequilibrium & Gmin edit
	I arget - none - Estimate T(K): 1000 Variables T(C) Si02/(Si02+Fe0) 1500 0 1	Legend I - immiscible 9 J - 3-immiscible 1 + - selected 17 FeO/(SiO2+FeO 01	✓ Show <a>e all C selecte species: 256 Selecte solutions: 38 Selecte Al203/ Fe/(Si02+Fe0) 0 (min) 0.0001 (min)	d Virtual species: 50 <u>Total Species (max 5000)</u> 299 <u>Total Solutions (max 200)</u> 38 <u>Total Phases (max 1500)</u> 81 Phase Diagram
	A = SiO2, B = MgO, C = FeO FactSage 8.0	shop80\Ferrous Applic	- recommend you not select	t both pure liquids and molten solutions -

Variables: SiO2-FeO-MgO-Al2O3-Fe composition #1. vs composition #	#1. ×	
Variables Y C X C a b b C B C X,Y steps 11 Next >>	Pressure or Volume Image: Constant in the second secon	l
- Compositions Quantity(g)		
1 SiO2 + 0 FeO + 0 MgO + 0 Al2O3 + 0 1 SiO2 + 1 FeO + 1 MgO + 0 Al2O3 + 0 #4 log10(composition) Composition # # #1	Variables: SIO2-FeO-MgO-Al2O3-Fe composition #1. vs composition #1. Variables Y _ C compositions 4 a _ b C log10(a) ▼ 0 A _ C _ XY steps 11 Next >> Variables Next >> Variables Y _ C composition #1. vs composition #1. vs composition #1. T and P Temperature (T(C) constant ♥ (P(atm) constant © log P C V(litre) 1 C log V	×
Add small amount of Fe	Compositions Quantity(g) #5. 0 Si02 + 0 Fe0 + 0 Mg0 + 0 Al203 + 1 Fe Constant 1 Si02 + 1 Fe0 + 1 Mg0 + 0 Al203 + 0 Fe 0.0001 #5 log10(composition) Composition # 0.0001 0.0001	
	Cancel	DK

Ferrous Processing 8

Variables: SiO2-FeO-MgO-Al2O3-Fe T(C) vs composition #1.	×	
Variables Y compositions 4T and P A C C T A C C X,Y steps 11Next >>	e or Volume m) constant o e) 1	With change 0 to 8 wt% of Al ₂ O ₃ at constant SiO ₂ /MgO=1 under Fe-saturation
Compositions Quantity(g) #3. 1 SiO2 + 0 Fe0 + -1 Mg0 + 0 Al2O3 + 0 Fe = 1 SiO2 + 1 Fe0 + 1 Mg0 + 1 Al2O3 + 1 Fe = #3 log10(composition) Composition # #3 - max = 4 Cancel	constant 💌 D	-Al2O3-Fe T(C) vs composition #1. X
	#4 . 0 SiO2 + 0 1 SiO2 + 1 #4 log10(composition)	Fe0 + 0 Mg0 + 100 Al203 + 0 Fe constant Fe0 + 1 Mg0 + 1 Al203 + 1 Fe 5 Composition # $\#4$ \checkmark max = 4 OK

Ferrous Processing 10

Dissolution of Inclusions into Molten Slags

Phase diagram between slag and inclusion to understand the inclusion dissolution mechanism

Park, Jung and Lee: ISIJ Inter. No. 11, 2006

Ferrous Processing 11

Dissolution of Inclusions into Molten Slags

Ferrous Processing 12

Dissolution of Inclusions into Molten Slags

Ferrous Processing 13

Applications to Oxide metallurgy (Inclusion control)

- Evolution of non-metallic inclusions: Formation of acicular ferrite -

- Non-metallic inclusions: nucleation sites for acicular ferrite
- Acicular ferrite: enhances the strength of steel

Evolution of Non-metallic Inclusions

Ferrous Processing 15

Evolution of Non-metallic Inclusions

GactSage[™]

Ferrous Processing 16

Inclusion evolution with temperature: Mn/Si/Ti steel

GactSage[™]

Ferrous Processing 17

Application to Tire-Cord Steel (Mn/Si deoxidation)

MnO-Al₂O₃-SiO₂ Phase Diagram

Jung et al., Metall. Mater. Trans. B, 2004, vol. 35B, pp. 259-268

Ferrous Processing 19

Inclusion composition with steel composition

Jung et al., Metall. Mater. Trans. B, 2004, vol. 35B, pp. 259-268 Kang and Lee, ISIJ Inter., 2004.

Ferrous Processing 20

Ferrous Processing 21

Calculation of the inclusion trajectory using Equilib

存 Equilib - Menu: last system		- 🗆 X
<u>File Units Parameters H</u> elp		
D 🚔 日	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	M 📑 🔁 🛣
Reactants (5)		
		0.007.0
	amj98.995 Fe + 0.5 Mn + 0.5 Si + <a> Al +	0.007 0
Products		
Compound species	- Solution phases	Custom Solutions
	* + Base-Phase Full Name	O fixed activities Details
🔲 gas 💿 ideal 🔿 real 🛛 0	+ FTmisc-FeLQ Fe-lig	0 ideal solutions
aqueous 0	+ FTmisc-BCCS bcc	Pseudonyms
pure liquids 0	+ FTmisc-FCCS fcc	apply 🗖 🔄 Edit
+ pure solids 33	I FToxid-SLAGA A-Slag-liq all oxides +	S Volume data
	I FToxid-SPINB B-Spinel	 assume molar volumes of solide and liquide = 0
species: 33	+ FToxid-MeO_A A-Monoxide	 include molar volume data
species. 55	+ FToxid-cPyrA A-Clinopyroxene	and physical properties data
	+ FToxid-OlivA A-Olivine	Deraequilibrium & Gmin edit
- none -	Legend I · immiscible 4	ted Total Species (max 5000) 198
Estimate T(K): 1000	+-selected 10 species: 165	ect Total Solutions (max 200) 18
Quantity(g): 0	solutions: 18	Total Phases (max 1500) 51
Final Conditions		– Equilibrium –
<a> 	T(C) P(atm) Product H(J)	onormal Onormal + transitions
0 0.005 0.0001	1000 1	C transitions only C open
10 steps 🗖 Table	51 calculation	IS - no time limit - Calculate >>
FactSage 8.0		11

The compositions of Mn and Si are set based on the target Mn/Si ratio and Mn+Si content Oxygen content should be controlled reasonably. If O is too high, Mn and Si will be largely changed from original target composition after rxn with oxygen.

GactSage[™]

Ferrous Processing 23

자동	저장 💽 🗃 🗜	E り、 C、 罪	~ ⇒ Equilib.xls	- 호환성 모드 - (C:₩Workshop80₩Ferro	ous Applications₩Equilib						로그인	囨 -	- 1	o >	×
파일	홈 삽입	페이지 레이아웃	수식 데이터	검토 보기	도움말								ß	공유	무메모	2
W15	-	$\times \checkmark f_x$														¥
A	В	с	D	E	F	G	н	1	J	к	L	м	N			
1 Alpha	Wt%-Al2O3(SLA	GA#1) Wt%-SiO2(SLAGA	#1) Wt%-FeO(SLAGA#1)) Wt%-Fe2O3(SLAGA#	1) Wt%-MnO(SLAGA#1) Wt%-Mn2O3(SLAGA#1) V	/t%-Al2O3(SLAGA#2)	Wt%-SiO2(SLAGA#2)	Wt%-FeO(SLAGA#2)	Wt%-Fe2O3(SLAGA#2)	Wt%-MnO(SLAGA#2)	Wt%-Mn2O3(SLAGA#2	A corner	B corner	C corner	
2 0	0	99.590634	0.1269274	9.38178E-05	0.28145942	0.000884936	0	62.570747	6.6540508	0.005014931	30.767009	0.00317861	0.99591	0.00409	0	
3 0.000	1 8.7792688	59.689018	5.3548953	0.001087166	26.17281	0.00292115	0.90530635	97.519694	0.4731067	4.64102E-05	1.1012222	0.000623975	0.59689	0.31532	0.08779	
4 0.000	2 11.776833	56.5178	5.0792122	0.000952035	26.621992	0.003211165	11.776833	56.5178	5.0792122	0.000952035	26.621992	0.003211165	0.56518	0.31705	0.11777	
5 0.000	3 14.104421	54.13043	4.8765629	0.000924089	26.884209	0.003453587	14.104421	54.13043	4.8765629	0.000924089	26.884209	0.003453587	0.5413	0.31765	0.14104	1
6 0.000	4 16.115769	52.12597	4.7091915	0.000930548	27.044486	0.003653455	16.115769	52.12597	4.7091915	0.000930548	27.044486	0.003653455	0.52126	0.31758	0.16116	
7 0.000	5 17.938484	50.358053	4.5625986	0.000953004	27.136094	0.003816174	17.938484	50.358053	4.5625986	0.000953004	27.136094	0.003816174	0.50358	0.31703	0.17938	Li I
8 0.000	5 19.633667	48.756118	4.4296695	0.0009843	27.175616	0.003945834	19.633667	48.756118	4.4296695	0.0009843	27.175616	0.003945834 🛒	0.48756	0.3161	0.19634	
9 0.000	7 21.234874	47.280873	4.3064771	0.001020872	27.172709	0.004045789	21.234874	47.280873	4.3064771	0.001020872	27.172709	0.004045789	0.47281	0.31484	0.21235	Li I
10 0.000	3 22.762045	45.908307	4.1907137	0.001060611	27.133755	0.004119056	22.762045	45.908307	4.1907137	0.001060611	27.133755	0.004119056	0.45908	0.3133	0.22762	
11 0.000	24.227658	44.622638	4.0809764	0.001102103	27.063457	0.004168505	24.227658	44.622638	4.0809764	0.001102103	27.063458	0.004168505	0.44623	0.3115	0.24228	
12 0.001	25.639853	43.412797	3.9763934	0.001144321	26.965615	0.004106024	25 620952	A2 A10707	2 0762024	0.001144221	26 065615	0.004196934	0.43413	0.30947	0.2564	
13 0.001	1 27.004183	42.270514	3.8764115	0.001186484	26.843	omposition	from C					0.004207056	0.42271	0.30725	0.27004	
14 0.001	2 28.324636	41.18924	3.7806664	0.001227993	26.700	ompositior	1 110111 9	lag # i				0.004201469	0.41189	0.30486	0.28325	
15 0.001	3 29.604261	40.163517	3.6889036	0.00126839	26.537							0.004182606	0.40164	0.30232	0.29604	
16 0.001	4 30.845546	39.188614	3.6009286	0.001307333	26.359 A	corner = w	/t%5102	2/100				0.0041527	0.39189	0.29966	0.30846	
17 0.001	5 32.050641	38.260325	3.516577	0.00134458	26.166			.				0.004113759	0.3826	0.29689	0.32051	
18 0.001	33.221495	37.374844	3.4356982	0.001379968	25.962 B	corner = (v)	wt%Mn0	()+Mn2()3+Fe()	+Fe2O3)/100 —	0.004067552	0.37375	0.29404	0.33221	4li I
19 0.001	7 34.359918	36.5287	3.3581458	0.001413399	25.747	(•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.004015618	0.36529	0.29111	0.3436	
20 0.001	3 35.467624	35.718717	3.2837738	0.001444829	25.524	corner - v	vt%∆l2(73/100				0.003959273	0.35719	0.28814	0.35468	4li I
21 0.0019	36.546246	34.941984	3.212436	0.001474255	25.29			50/100				0.00389963	0.34942	0.28512	0.36546	48.1
22 0.002	37.59734	34.195842	3.1439854	0.001501703	25.057+++++	0.00000702	51.39134	34.193042	5.1459034	0.001301705	23.03/494	0.00383762	0.34196	0.28207	0.37597	461
23 0.002	1 38.622386	33.477858	3.0782765	0.001527226	24.816178	0.003774015	38.622386	33.477858	3.0782765	0.001527226	24.816178	0.003774015	0.33478	0.279	0.38622	41.1
24 0.002	2 39.622789	32.785816	3.0151654	0.001550888	24.570969	0.003709449	39.622789	32.785816	3.0151654	0.001550888	24.570969	0.003709449	0.32786	0.27591	0.39623	
25 0.002	40.599875	32.1177	2.954512	0.001572768	24.322696	0.00364444	40.599875	32.1177	2.954512	0.001572768	24.322696	0.00364444	0.32118	0.27282	0.406	44
26 0.002	4 41.554894	31.471674	2.8961804	0.001592947	24.072079	0.003579405	41.554894	31.471674	2.8961804	0.001592947	24.072079	0.003579405	0.31472	0.26973	0.41555	41
27 0.002	5 42.489017	30.846074	2.8400399	0.001611515	23.819743	0.003514678	42.489017	30.846074	2.8400399	0.001611515	23.819743	0.003514678	0.30846	0.26665	0.42489	Hi I
28 0.002	5 43.403342	30.239387	2.7859654	0.001628557	23.566227	0.003450526	43.403342	30.239387	2.7859654	0.001628557	23.566227	0.003450526	0.30239	0.26357	0.43403	
29 0.002	43.641561	30.081907	2.7718137	0.001632672	23.499652	0.003433744	43.641561	30.081907	2.7/18137	0.001632672	23.499652	0.003433744	0.30082	0.26277	0.43642	Hi I
30 0.002	43.641639	30.081465	2.7715307	0.001632482	23.500299	0.003433782	43.641639	30.081465	2.7715307	0.001632482	23.500299	0.003433782	0.30081	0.26277	0.43642	H!
31 0.002	9 43.641/16	30.081023	57715A78	0.001630201	23.500947	0.003433821	43 641 / 16	30 081023	27/124/8	0.001632291	23 500947	0.003433821	0.30081	0.26277	0.43642	H
32 0.003	43.641/93	30.080581		~ #1	23.501595	0.003433859				<u>, но</u>			0.30081	0.26278	0.43642	11
33 0.003	43.0418/1	30.080139	- Sla	Q # I	23.502242	0.003433897			Siac	1 <i>#</i> Z			0.3008	0.26278	0.43642	Hi.
34 0.003	2 43.041948	30.079697		5	23.50289	0.003433935				<i>y</i> ··· —			0.3008	0.26278	0.43642	- ! -
35 0.003	43.042025	30.079255	(ctabl	a claa	23.503537	0.003433973		(motos	tahla a	reamo	ac #1		0.30079	0.26279	0.43642	Η.
30 0.003	4 43.042102	30.078813	- (วเลมเ	e slag	23.504185	0.003434011		าเมษเลอ	slavie u	Same	as # 1		0.30079	0.26279	0.43642	- !
20 0.003	40.04218 8 42.642257	20.07702	1 (60)690	0.001620051	225.304652	0.003434049			, ,		11 1114	、 —	0.20078	0.20279	0.45042	
30 0.003	7 A3 6A2223/	30.077499	2.7092009	0.001630771	23.30346	0.003434007	excep	t in cas	se ot sta	able mi	SCIDIIItV	dap) –	0.30078	0.2028	0.45042	1
40 0.002	A A 2 642411	30.077046	2.7687030	0.001630591	23.506774	0.003434163	P					3~~/ _	0.30077	0.26281	0.43642	
41 0.003	43 642490	30.076604	2 7684215	0.001630392	23 507421	0.003434201	43 642489	30.076604	2 7684215	0.001630392	23 507421	0.003434201	0.30077	0.26281	0.43642	
()	Sheet1	(+)					*. (Corr - 11.)		•						+	, 1
											시프레이 서저				1 00	204
										나랍 니	그글네이 걸성				089	17/0

Ferrous Processing 26

Re-oxidation and inclusion modification in the tundish – Ca-treated steel

At 1550°C

Al killed steel

+ 600ppm Al
+? inclusion

e Units Parameters Helj) 🗃 🖬 Reactants (2)	p T(C) P(atm) Energy(J	l) Quantity(g) Vol(litre)	M 🗩 🔁
	(gram) 100% [Ex4-1	I(a)] + 0.06 AI	
Products Compound species ↓ gas	Solution phases + Base-Phase 5 + FTmisc-FeLQ	Full Name Fe-lig	Custom Solutions O fixed activities O ideal solutions
aqueous (pure liquids (+ pure solids 14 * - custom selection species: 25	0 I FToxid-SLAGA 0 I FToxid-SPINA 4 + FToxid-Me0_A I FToxid-CORU 9	A-Slag-liq all oxides + S A-Spinel A-Monoxide M2D3(Corundum)	Pseudonyms apply Edit Volume data assume molar volumes of solids and liquids = 0 c include molar volume data and physical properties data
Target - none - Estimate T(K): 1000 Quantity(g): 0	Legend I - immiscible 3 + - selected 2	Show Selected species: 63 solutions: 8	paraequilibrium & Gmin edit Virtual species: 12 Total Species: 92 Total Solutions (max 200) 8 Total Phases (max 1500) 23
Conditions <a> IO steps	T(C) P(atm)	Product H(J) I calculation	C normal C normal + transition transitions only C open no time limit - Calculate >>

Ferrous Processing 33

JactSage[™]

Ca treatment: liquid slag

Equilib - Menu: last system Х + <100ppm Ca Units Parameters Help 🛩 日 111 🖳 🕞 😿 T(C) P(atm) Energy(J) Quantity(g) Vol(litre) +? Inclusion Reactants (2) + ? Slag (gram) 100% [Ex4-1(b)] + <A> Ca Products Compound species Solution phases Custom Solutions Full Name 0 fixed activities **Base-Phase** + 0 ideal solutions ∓ gas 📀 ideal 🔿 real 18 FTmisc-FeLQ Fe-lig + 0 A-Slag-lig all oxides + S FToxid-SLAGA Pseudonyms aqueous Edit ... 0 apply 🗌 pure liquids FToxid-SPINA A-Spinel 31 Volume data ★ ↓ pure solids FToxid-Me0_A A-Monoxide 1 assume molar volumes of FT oxid-CAF6 Ca(Al,Fe)12019 + solids and liquids = 0 * - custom selection FT oxid-CAF3 Ca(Al,Fe)6010 + include molar volume data species: 49 FT oxid-CAF2 Ca(Al,Fe)407 and physical properties data + FToxid-CAF1 Ca(Al,Fe)204 ▼ paraequilibrium & Gmin edit Transitions - alpha <A> Legend Virtual species: 20 Show
all
begin{tabular}
 selected
 selected I - immiscible 5 Total Species (max 5000) 136 Number of + - selected 6 All species: 87 **•** transitions: 16 Select Total Solutions (max 200) solutions: 16 Total Phases (max 1500) 48 **Final Conditions** Equilibrium Product H(J) <A> T(C) P(atm) normal normal + transitions 1550 C open transitions only 0 0.01 0.0001 steps Table 101+ calculations - no time limit -Calculate >> FactSage 8.0

Reoxidation: assuming mainly due to SiO2 based slag

+ <100ppm SiO2 + ? Inclusion + ? Slag

🕝 Equilib - Menu: \times File Units Parameters Help 🗅 🚅 日 T(C) P(atm) Energy(J) Quantity(g) Vol(litre) 11 🖳 🔁 🕅 Reactants (2) (gram) 100% [Ex4-1(c)] + <A> SiO2 Products Compound species Solution phases Custom Solutions Details 0 fixed activities **Base-Phase** Full Name + 0 ideal solutions ∓ gas 💿 ideal 🔿 real 23 FTmisc-FeLQ Fe-lia + 0 aqueous 1 FToxid-SLAGA A-Slag-lig all oxides + S Pseudonyms Edit ... pure liquids 0 FToxid-SPINA A-Spinel apply 1 * ∓ pure solids 88 Volume data FToxid-Me0_A A-Monoxide assume molar volumes of Ι FT oxid-cPyrA A-Clinopyroxene solids and liquids = 0 * - custom selection FT oxid-oPyrA A-Orthopyroxene + include molar volume data 111 species: FT oxid-pPyrA A-Protopyroxene and physical properties data + FToxid-LcPy LowClinopyroxene + paraeguilibrium & Gmin edit Target Legend Virtual species: 30 Show 📀 all 🔿 selected - none -I - immiscible 8 Total Species (max 5000) 417 Estimate T(K): 1000 + - selected 16 306 species: 32 Select Total Solutions (max 200) 32 Quantity(g): 0 solutions: Total Phases (max 1500) 121 **Final Conditions** Equilibrium <A> ▼ Product H(J) ▼ T(C)P(atm) normal normal + transitions 1550 1 C transitions only O open 0 0.01 0.0001 Table steps 101 calculations - no time limit -Calculate >> FactSage 8.0

Reoxidation and inclusion modification in the tundish

100% [Ex4-1(c)] + <A> SiO2

F:\ThermFact-Quotation\FactSage workshop\2020\FactSage 8.0 slides\Ferrous Appli

Reoxidation and inclusion modification in the tundish

Inclusion diagram: Fe-AI-O, AI deoxidation

Inclusion diagram: Fe-Al-O, Al deoxidation

🕞 Figu	re User : FactSage Workshop													
File A	Add Edit View Help													
	Copy	Ctrl+C	80%		ed									
/	Paste	Ctrl+V		Eo - Al -	0									
÷₽	× Delete	Del			Ŭ			с н						
1	K2 Undo			7600 C, 1	atm		4 <i>f</i> act	Sage						
A		E	<u>' '</u>	1	1 1	1 1	1	[
		(2)	change	X- an	d Y-avis	lower li	mit							
	Ternary Frame	(∠).	change							(3) char	nae lir	har sca	ale to log scale	~
	Reciprocal Frame	1		- [Cha	ange scale		(0). 611	ige in		lie to log scale.	~
7	Selected			í	1 1	1 1			Axis opera	tions are perform	ned first (X	then Y) in the	order set by the user	
_	Fig file	Christ	1	((/		X-	Axis Ope	ations			Y-Axis Ope	rations	
	Change Scale	_ <mark>(3)</mark> :	change	linear	scale to	log sca	ale. 🖞	Jrder	Apply		<u> </u>	Urder	Apply ICtolk	<u> </u>
-			1	1 1	1	1 1		1 💌	scale type	og(X)	-	1 💌	scale type log(Y)	-
	<u>8</u> 0.0006	í	í	í í	Í.		I I I	2 -	multiplication	factor 1		2 -	multiplication factor	
	♀ i	j	j	<u> </u>	1				manipication				maniplication ractor p	
	₹ [<mark> (2)</mark> · (chanc	ie X- and	l Y-avi	s lower l	imit		3 🔽	translation (d>	() 2		3 🔻	translation (dY)	
Fram	le & Axis	chang												
The	me			Template				N Operatio	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	K/Y operations a	"Af	ter chanc	ning the axes to log	
								i operacio	15	C 8- 6			all ourvos to 12 in	
Figu	ure Titles					Info		none		€ np(i	11 SUC			
-					(75:50)	🕅 date	🗆 file 🔿	flip (17X)		C rotate	_{e ar} , line	ear scale		
title	Fe-Al-0					Frame								
subti	itle 🔽 1600}o{C, 1 atm	_			font	V left V to	P ria	ibbs Tria r	gle Operation	ns				
logo	🔽 User Bitmap 💌	font				, bo	ottom	🖲 No Swaj	A-A)	kis multiplicator	1.0			
X-A:	xis			Y-Axis				🗅 A-B Swa	P P.A.	io multiplicator	1			
title	Al/(Fe+Al+O) (g/g)		font	title	0/(Fe+Al+O) (g/g)	0	A-C Swa	D 747	as manpicator	1.0			
mavi	imum .01	Line Propertie	es	maximum	.001	Line properti	es (B.C.Swa	C-A	kis multiplicator	1.0			
	1.0E-06	tule Solid	•		1.0E-06	stule Solid		- D-C 3770	P		1			
minin		217		minimum	0001	150			n	ĸ			¥ Cancel	1
incre	ement 1.001	engtn	mm	increment	.0001				• •	ĸ				
label	Is at 0.002 font v	width .4	mm	labels at	.0002 font	width ^{1.4}	mn	n						
form	at 0.####;;0 🔻 o	color		format	0.####;;0 💌	color								
Gri	id			Grid				7						
	on/off 🔽 both 📔 🛛 s	style Dot		n/off	🗹 both	style Dot	v	1						
grid	dat .1 v	width .1	mm	grid at	.1	width 1	mm	1						
	Save as Template	Read	Template	~	ок	X C	ancel							

Ferrous Processing 40

Inclusion diagram: Fe-AI-O, AI deoxidation

Ferrous Processing 41

New way to set the axis in log scale

 \rightarrow log – log diagram or log – linear scale diagram can be calculated now

	Variables: Fe-Al-O composition #2. vs composition #1.					
	Variables Compositions 2 Y C compositions 2 A C log10(a) 0 C A C C Next >> Next >> Next >>					
	- Compositions Quantity(g)					
Log scale →	#1. 0 Fe + 100 AI + 0 0 -axis Image: state stat					
	#2. $\frac{0}{1}$ Fe + 0 Al + 100 0 = $\frac{Y-axis}{-1 (max)}$					
Log scale →	✓ #2 log10(composition)					

Inclusion diagram: Fe-Al-Ti-O, Al/Ti deoxidation

Ferrous Processing 43

Inclusion diagram: Fe-Al-Ti-O, Al/Ti deoxidation

Ferrous Processing 44

JactSage[™]

Inclusion after Mn/Si deoxidation

Figure 11: Calculated inclusion stability diagrams in the Fe-Mn-Si-Al-O system at 1550°C for (a) mass% Mn = 0, (b) mass% Mn = 0.5, (c) mass% Mn = 1.0 and (d) mass% Mn = 1.5. Numbers adjacent to each line represent equilibrium oxygen contents (in ppm) in liquid steel [23].

Ferrous Processing 45

Al killed Ti bearing steel

存 Data Search	×
–Databases - 3/26 compound databases, 2/26 solutio	n databases
Gact GactSage" SGTE compound	sonly Private Databases
✓ FactPS FScopp BINS solutions ✓ FToxid FSlead SGPS no data □ FTsalt FSstel SGTE ✓ FTmisc FSupsi SGsold Clear /	Only EXAM SGTEa SGTEb Image: Construction of the second se
FT0xCN Other Add/Remove FTfrtz Other Add/Remove FThelg ELEM SGnobl FTpulp FTdemo SpMCBN TDmeph TDmeph	Image: Control of the second secon
FTlite FTnucl Dnucl	Products
Options - search for product species Options - search for product species Include compounds Oefault Oefault Oefault Include compounds (25C) Cancel	Compound species Solution phases + gas (• ideal C real 57 aqueous 0 pure liquids 0 FToxid-ILMEB B-Ilmenite + pure solids 107 FToxid-ILME? * - custom selection species: 164 + FToxid-TSpi Tetragonal-Spinel - Target + FToxid-Brau Braunite_Mn7Si012 - none - Estimate T(K): 1000 - FToxid-Rhod Quantity(g): 0 - FToxid-I3
	Final Conditions Conditions Equilibrium <a> T(C) P(atm) Product H(J) Image: Constraint of transitions 10 steps Table 1 Constraint of transitions Constraint of transitions FactSage 8.0 C:\Workshop80\Ferro\Ferrous_Applications_II_46.equi Image: Constraint of transitions Image: Constraint of transitions

Al killed Ti bearing steel

Reoxidation of AI killed Ti bearing steel

Equilib - Results 1600 C		- 🗆 X	
utput Edit Show Pages Eina Save or Print As Repeat Save	Conditions T(C) P(atm) Energy(J) Quantity(g) Vol(litre)		
Equilib Results file	* Fe * Al	^	
Stream File	Recycle all streams		
Format	Save stream file		
Fact-XML 2	Stream file properties	' Equilib - Reactants	- 🗆 X
Fact-Optimal	Summary of streams <u>File</u>	<u>Edit</u> <u>Table</u> <u>Units</u> <u>Data Search</u> Data Evaluation <u>H</u> elp	
Fact-Function-Builder	Directory (C:\Workshop80\Ferro\)	1 🗃 🕂 T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	M 🖳 🔁
Refresh	\$ A120 \$ Ti20)		
Swap loops	t Amount/mol Amount/gram	1 - 4	
Fe Mn Ti Si Al O N C + 3.9506E-03 gram M2O3 (3.9506E-03 gram, 3.0 + 0 gram M2O3 (1600 C, 1 atz (99.036 n + 2.8914E-05 n	1.7718 98.947 1.2742E-02 0.70000 2.0886E-03 9.9975E-02 7.1211E-03 0.20000 1.0351E-03 2.7929E-02 4.0345E-05 6.4549E-04 1.0709E-03 1.5000E-02 4.1630E-04 5.0000E-03 (Corundum) #1 137E-05 mol) (Corundum) #2 n, a=1.0000) rt.% A1203 rt.% Fe203	Quantity(g) Species Phase T(C) P(tot 100% [Rc_A-Monoxide] •	al]** Stream# Data 2 3 4 5
 *Recycle you dor will be used special Convertion 	all streams" n't have to save the s used only one time b stream name. nient option when yo	stream one by one. But the results ecause it is not saved under u want to do one calculation	Initial Conditions
		Next >>	

Reoxidation of AI killed Ti bearing steel

存 Equilib - Menu: last system	- 🗆 X							
<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp								
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)								
Reactants (3) (gram) 100% [Rc_Fe-liq] + 100% [Rc_M203(Corundum)] + <a> 02								
Products	Addition of oxygen to simulation							
Compound species								
as Gideal Circal 57	Full Na reoxidation phenomena.							
	ETmiseBCCS bee Real source of oxygen could be							
pure liquids 0	ETmise-ECCS							
* + pure solids 107	L FToxid-SLAGA A-Slag-lig all o high SIO ₂ slag or refractories							
	FToxid-SLAG? ?-Slag-lig @assume moral volumes or							
* - custom selection	I FToxid-SPINB B-Spinel solids and liquids = 0							
species: 164	+ FToxid-MeD_A A-Monoxide and physical properties data							
	FToxid-MeO_B B-Monoxide							
Target Legend I paraequilibrium & Gmin edit · none · I immiscible 5 Show • all • Selected Estimate T(K): 1000 + · selected 11 Quantity(g): 0 Show • all • Selected Select								
Final Conditions	E quilibrium							
<a> 	T(C) P(atm) Product H(J) r Onormal + transitions							
0 0.05 0.001	1600 1 C transitions only C open							
10 steps Table	51 calculations - no time limit - Calculate >>							
FactSage 8.0 C:\Workshop80\Ferro\Ferrous_Applications_II_46.equi								

Reoxidation of AI killed Ti bearing steel

This calculation shows that mixed inclusion of Al2O3(s) and liquid (Al2O3-TiO2-Ti2O3) can be formed by the reoxidation of Al-killed Ti bearing steel. \rightarrow Nozzle clogging.

Ferrous Processing 50

TiN formation in AI killed and Ti bearing steel

Original steel composition at 1600C: high N and high Ti \rightarrow may form TiN

(gram) 98.9475 Fe 🛛 + 0.7 Mn + 0.03 Al + 0.2 Si + 0.0025 O + 0.015 N + 0.005 C + 0.1 Ti

存 Equilib - Menu: last system - 🗆 🗙								
<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp								
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	N							
Reactants (2)								
(gram) 100% [Rc_Fe-liq] + 100% [Rc_M203(Corundum)]								
Products								
Compound species Custom Solutions								
× + Base-Phase Full Name ▲ 0 fixed activities	\$							
+ gas (• ideal C real 57 + FTmisc-FeLQ Fe-liq U ideal solutions								
aqueous 0 + FTmisc-BCCS bcc Pseudonyms								
pure liquids 0 + FTmisc-FCCS fcc apply 2000								
* + pure solids 107 I FToxid-SLAGA A-Slag-liq all oxides + S Volume data								
FT oxid-SLAG? ?-Slag-liq essume molar volumes of solids and liquids = 0	or							
species: 164	/olume data							
+ FToxid-Me0_A A-Monoxide	data							
FToxid-MeO_B B-Monoxide	edit [
Target Legend Image: Construction of the selected of the selecte	371 23 131							
Final Conditions								
<a> T(C) P(atm) Product H(J) Onormal C normal + trans	sitions							
1600 1500 10 1 C transitions only C oper								
10 steps Table 11 calculations - no time limit - Calculate	>>							
actSage 8.0 C:\Workshop80\Ferro\Ferrous_Applications_II_46.equi								

TiN formation in AI killed and Ti bearing steel

Ferrous Processing 52

Nozzle Clogging in Ti-bearing Al-killed steel

- Kawashima et al., CAMP-ISIJ (1991)
 - Liquid AI-Ti-O (reoxidization) attached to Al₂O₃ inclusions
- Basu et al. ISIJ Int. (2004)

Significant difference of nozzle clogging of Ti-bearing steel from and Ti-free steel is the existence of the Al-Ti-O inclusions covering Al_2O_3 core oxides. Reoxidation in tundish (high SiO₂ slags) causes the nozzle clogging.

Inclusions generated by Reoxidation process

RH process after Ti addition (POSCO) Doo et al. (2007)

Reoxidation in Tundish Basu *et al. (2004)*

Reoxidation in Tundish (high SiO2 slags) *Park et al. (2004)*

FactSage[™]

Ti | Ti

Reoxidation of steel by CO gas

Ferrous Processing 55

Reoxidation of steel by CO gas

Reoxidation of steel by CO gas

Reoxidation of steel by CO gas through ceramic nozzle to form slag(AI-Ti-O) and AI_2O_3

Newly calculated Inclusion diagram of Fe-Al-Ti-O system

Ferrous Processing 58

RH OB

- High amount of oxygen blowing
- Increase of Ferro-alloy (AI, Si, Mn, etc) addition
- \rightarrow More severe local corrosion of RH vessel refractory

Concept for RH process simulation modeling

RH Vessel Refractory

Predicted slag composition in RH vessel from RH process simulation \rightarrow

Experimental and calculation conditions

Table 1: Composition of the synthetic slags (wt%).

Slag	Symbol	MgO	Al ₂ O ₃	SiO ₂	CaO	FeO
Ladle slag	L	5.3	27.7	10.7	56.3	0.0
FeO-rich slag 1	F1	4.2	22.2	8.6	45.0	20.0
FeO-rich slag 2	F2	3.2	16.6	6.4	33.8	40.0
CaO-Al ₂ O ₃ slag 1	C1	0.0	45.0	0.0	55.0	0.0
CaO-Al ₂ O ₃ slag 2	C2	0.0	60.0	0.0	40.0	0.0

Defractory	Overall composition (wt%)							Apparent
Reflactory	MgO	Cr_2O_3	CaO	SiO ₂	Al_2O_3	FeOt	С	porosity (%)
Magnesia-chromite	55.8	22.9		2.1	8.2	11.0		16~17
Magnesia-carbon	90.3		0.8	2.2	6.8		5.1	11~13

M.-K. Cho, *M.-A.* Van Ende, T.-H. Eun and I.-H. Jung, "Investigation of slag-refractory interactions for the Ruhrstahl Heraeus (RH) vacuum degassing process in steelmaking", J. Eur. Ceram. Soc., 2012, 32,1503-1517.

Refractory Finger tests at 1600°C

Ferrous Processing 62

Thermodynamic Calculations: Refractories – Slag Interactions

Ferrous Processing 63

Ladle Glaze formation

Dipping time: 120 sec

Refractory composition (wt.%)

CaO	SiO2	AI2O3	MgO
2.35	0.76	88.06	8.35

Slag composition (wt.%)

CaO	SiO2	AI2O3	MgO
54.06	10.47	26.24	9.23

Glazed Refractory

Ferrous Processing 65

Glaze (Reaction product of slag and refractory)

GactSage[™]

Ferrous Processing 66

Equilibrium stability calculations with temperature: refractories

Equilibrium stability of 20MgO-78Al₂O₃-2CaO refractories

存 Equilib - Menu: last system			- 🗆 X
<u>File Units Parameters H</u> elp			
	T(C) P(atm) Energy(J)	Quantity(g) Vol(litre)	111 😏 💽 😿
Reactants (3)			
	(gram) 2 CaO + <a> Mg	g0 + <98-A> Al2O3	
Products			
Compound species	Solution phases		Custom Solutions
	* + Base-Phase	Full Name	0 fixed activities Details
📕 gas 🙃 ideal 🔿 real 🛛 0	I FToxid-SLAGA	A-Slag-liq all oxides + S	U ideal solutions
aqueous 0	+ FToxid-SPINA	A-Spinel	Pseudonyms Edit
pure liquids U	I FToxid-MeO_A	A-Monoxide	applyCurrent
species: 13			assume molar volumes of solids and liquids = 0 include molar volume data and physical properties data
Transitional temperatura			🗖 paraequilibrium & Gminedit
- I ransitions - temperature	Legend V S	how 🖲 all 🔿 selected	Virtual species: 6
Number of	+ - selected 1		Total Species (max 5000) 31
transitions:		olutions: 5 Select	Total Solutions (max 200) 5
	Ľ		Total Phases (max 1500) 18
Final Conditions			Equilibrium
<a> 	T(C) P(atm)	▼ Product H(J) ▼	normal o normal + transitions
20	1200 1800 50 1		C transitions only C open
10 steps 🗖 Table	-, ,	13+ calculations	no time limit · Calculate >>
FactSage 8.0			
-			11

Equilibrium stability calculations with temperature: refractories

The refractory is mechanically unstable above 1600°C:

- considerable volume change due to the significant change in phase distribution The refractory cannot be used above 1690°C:

- significant amount of liquid phase formation

Ferrous Processing 68

Thermal Stability test of Refractories

GactSage[™]

Ferrous Processing 69

Thermal Stability test of Refractories

Ferrous Processing 70

jactSage[™]

Refractory – Liquid Inclusion Interactions

M.-K. Cho and I.-H. Jung, "Corrosion of nozzle refractories by liquid inclusion in high oxygen steels", ISIJ Inter. 2012, vol. 52, pp. 1289-1296.

Refractory – Liquid Inclusion Interactions

Fig. 2. Calculated inclusions formed in high oxygen steel (Fe-0.08C-1.2Mn-0.3S-0.01Si-O-minor P, Bi, etc. in wt%) during continuous casting process. (a) and (b): amount and composition of liquid inclusion varied with total oxygen content in steel at 1 550°C, (c) and (d) amount and composition of liquid inclusion in molten steel containing 200 wt ppm oxygen varied with temperature.

Please see the details in the ISIJ paper

Ferrous Processing 72
Refractory – Liquid Inclusion Interactions

Chemical compositions of the refractories investigated in Table 1. the present study.

wt%	Al ₂ O ₃ –C	Al ₂ O ₃ -AlN-C	Spinel-L-C	Spinel-H-C	ZrO ₂ -C
Al_2O_3	95	54	70	62	
MgO			26	25	
ZrO ₂					85*
С	3	15	4	13	13
SiC	2				2
AlN		30			
etc.		1			

* CaO stabilized ZrO₂.

Variation of liquid inclusion composition depending on the Fig. 8. degree of reduction by carbon contained in refractory.

Please see the details in the ISIJ paper

Refractory corrosion mechanism by liquid inclusion in high Fig. 9. oxygen steels.

С

Ć

Refractory – Liquid Inclusion Interactions

Relative Stability of the refractories against liquid MnO-SiO2 type inclusion

Fig. 10. Thermodynamic stability of the refractory components against liquid inclusion (MnO-SiO₂) at 1 550°C. The arrows (gray arrow represents high degree of reduction, and empty arrow represents low degree of reduction) in phase diagrams represent the possible amount of dissolution of each refractory component.

Ferrous Processing 74

Refractory-Steel Interaction

存 Equilib - Menu: last system - 🗆 🗙							
<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp							
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	11 📑 🔁				
Reactants (5)							
(mar) 05	For a A Maria Circa att	00.1004× M=0	× 4/202				
(gram) 95	re + 4 mn + 51 + <10	UU-TUUA> MgU + <tuua< td=""><td>> AI2U3</td></tuua<>	> AI2U3				
Products.							
- Froducts	- Solution phases		- Custom Solutions				
Compound species	× + Base-Phase	Full Name	D fixed activities Details				
🗖 gas 💿 ideal O real 🛛 0	+ FTmisc-FeLQ	Feila	0 ideal solutions				
aqueous 0	+ FTmisc-BCCS	bcc	Pseudonyms				
pure liquids 0	+ FTmisc-FCCS	fcc	apply Edit				
* ∓ pure solids 68	I FToxid-SLAGA	A-Slag-liq all oxides + S	Volume data				
* evictors colorition	I FT oxid-SPINB	B-Spinel	assume molar volumes of solids and liquids = 0				
species: 68	+ FToxid-MeO_A	A-Monoxide	include molar volume data				
	FToxid-MeO_B	B-Monoxide	and physical properties data				
	FToxid-MeO_?	?-Monoxide	🔲 paraequilibrium & Gmin 🛛 edit				
- none -	Legend	Show 🔍 all 🕓 selected	Virtual species: 42				
Estimate T(K): 1000	+ selected 14		Total Species (max 5000) 349				
Durantitu(a)		species: 281 solutions: 22 Select	Total Solutions (max 200) 22				
Quanov(g): ju		solutions. 22	Total Phases (max 1500) 90				
- Final Conditions			quilibrium				
<a> 	T(C) P(atm)	▼ Product H(J) ▼	normal O normal + transitions				
0 1 0.01	1600 1		transitions only C open				
10 steps 🗖 Table		101 calculations	no time limit · Calculate >>				
EastSage 9.0							
racibage 6.0			11.				

Refractory-Steel Interaction

Ferrous Processing 76

High Mn-Fe melt storage for TWIP Steel production

Ferrous Processing 77

High Mn-Fe melt storage for TWIP Steel production

LIQU 100 Spinel Maalcoa MnAcoa MgO MgO 90 0.8 80 70 gram 0.6 60 weight % 10Um (A1203) 50 0.4 40 (MgO-MnO) 0.2 30 20 0 0.2 0.4 0.6 0.8 10 0.0 1.0 MnO <A> MgO + <1-A> Al₂O₃ 0 0.2 0.4 0.6 0.0 0.8 1.0 AI_2O_3 MgO MgAl₂O₄ \leftrightarrow <A> MgO + <1-A> Al₂O₃ 100 100 Steel Spinel 90 90 Mn 80 80 70 70 MgAl₂O₄ 60 60 weight % weight % 50 50 40 40 30 AI_8O_{12} 30 20 20 Fe MnAl₂O₄ 10 10 AI 0 0 0.6 <A> MgO + <1-A> Al₂O₃ 0.0 0.2 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 <A> MgO + <1-A> Al₂O₃

1g Mn-Fe melt + 1g refractory (MgO-Al₂O₃)

Ferrous Processing 78

Refractory for TWIP steel: Fe-20%Mn-1.5%Al-0.6%C

Ferrous Processing 79

Refractory for TWIP steel: Fe-20%Mn-1.5%Al-0.6%C

Ferrous Processing 80

Desulphurization

Desulphurization of Hot Metal in the De-S station, Desulphurization of steel during Ladle treatment and calculating Sulphide Capacity

More examples can be found in:

http://in-ho-group.snu.ac.kr/?page_id=398

Ferrous Processing 81

Desulphurization of Hot Metal

- The hot metal tapped out of the blast furnace typically contains 0.04-0.07% S.
- To reduce the amount of sulphur in the hot metal between the blast furnace and the oxygen converter, desulphurization is usually performed at a De-S station such as KR using flux (CaO, CaC2, Mg, ...)
- In the secondary steelmaking (recently in LF unit), de-S can occur between slag (CaO-rich) and steel due to strong agitation.

Ferrous Processing 82

The following reactions have been proposed to reduce the sulphur content in hot metal:

$$\begin{split} Mg(s) + \underline{S} &\to MgS(s) \\ CaC_2 + \underline{S} &\to CaS(s) + 2\underline{C} \\ CaO + \underline{S} + \underline{C} &\to CaS(s) + CO(g) \\ Mg + CaO + \underline{S} &\to CaS(s) + MgO(s) \\ CaO + 2\underline{Al} + \underline{S} + 3\underline{O} &\to (CaO \cdot Al_2O_3) (S) \\ (CaO \cdot Al_2O_3)(s) + \underline{S} &\to (CaO \cdot Al_2O_3) (S) \end{split}$$

In the following pages, it will be shown how FactSage could be used to calculate the efficiency of each desulphurizing agent.

It will then be shown how the exact amount of desulphurizing agent can be selected to achieve the desired sulphur content.

1. Right-click on "pure solids"							
存 Equilip - Menu: last system	Gelection - Equilib - no results - □ ×						
<u>F</u> ile <u>Units P</u> arameters <u>H</u> elp	<u>F</u> ile <u>E</u> dit Show Sort						
🗅 😅 🖬 🛛 T(C) P(a)	Selected: 40/52 SOLID Duplicates selected. X denotes species excluded by default						
Reactants (6)	no results -						
(gram) 94.335 Fe + 4.5 Products Compound species Gas ⓒ ideal O real 0 Gatueous O FTm FTm FTm * - custom selection FTm	+ Code Species Data Phase T V Activity Minimum Maximum A X 78 'Fe7S8'(s) FactPS pyrhotite-4 2. Minimum Maximum A X 79 Fe9S10(s) FactPS pyrhotite-5 2. The selection X 80 Fe10S11(s) FactPS pyrhotite-5 2. The selection X 81 Fe11S12(s) FactPS pyrhotite-6 Contains data from both FTmisc and FactPS. + 82 S(s2) FTmisc Outorhombe FTmisc and FactPS. Some of the data is + 85 Fe5(s) FTmisc Pyrhotite-4 Overlapping (highlighted in red as "Duplicates") in red as "Duplicates") + 89 Fe9S10(s) FTmisc pyrhotite-5 Overlapping (highlighted in red as "Duplicates")						
species: 40 FTn + 91 Fe11S12(s) FTmisc pyrnhotite-6C o Target - - permit selection of X' species Help Suppress Duplicates Edit priority list : - - - Show Selected Select All Select/Clear Clear OK Quantity(g): 0 - - - - - - - Final Conditions - - - - - - - - - - Final Conditions -							
CAX CBX T(C) 0 1 0.01 1600 1 10 steps Table	P(atm) Product H[J] 1 Image: Constraint of normal + transitions 1 Image: Constrate + transitions 1						

Ferrous Processing 85

GactSage[™]

Ferrous Processing 86

Ferrous Processing 87

JactSage[™]

Now we can see that the axes have been selected. We just need to choose sulphur as the species.

JactSage[™]

Ferrous Processing 89

į	1. No that and th bee	ow we can both the le species en select	n see axes s have ed.			
		File Help	g10(weight % soln. species)	vs Alpha	×	
			94.335 Fe + 4.50	C + 0.5 Si + 0.6 Mn +	-	
		Axes	Variables	Minimum	Maximum	
			activity	0	12.392	
			mole	0	2.1018	
			mole fract, soln, species	0	0.807203	
			gram	0	100.16	
		Y-axis	weight % soln. species	0	94.394	
		X-axis	Alpha	0	1	
			T(C)	1400	1400	
			P(atm)	1	1	
			Cp(J/K)	81.908	106.69	
			G(J)	-1.9376E+05	-1.8936E+05	
			Vol(litre)	0	0	
			H(J)	1.3098E+05	1.3490E+05	
			V(litre)	0	0	
			S(J/K)	191.73	196.43	
			- page -	1	101	
		Axes	Species	- Graph	olau	
		Ulweight & si Vs Alpha	Select	size: 9 no: 4	color full screen colors O Viewer reactants Figure file name	2. The "Plot" button is now activated. Click it!
		FactSage 8.0	C:\Workshop80\Ferro\E	qui0.res	22Dec19 101 sets	

Ferrous Processing 90

1. It can be seen that after the addition of 0.1g Mg, the desulphurization is not so effective.

2. If our target was 0.001% S, we can read off the graph that this sulphur level will be achieved after adding approximately 0.05g Mg.

3. However, there is a better way.

Ferrous Processing 91

	Equilib - Menu: last system File Units Paran 1. Right E Ftmisc-F Reactants (6)	t-click on the eLQ selection	y(g) Vol(litre) 3. 0.6. Mp + 0.065.5 Composition Ta por	- × This ow will o-up ×
2. Click on "composition target"	Products Solution Compound species Solution Solution FTmisc-FeLQ - clear - clear - all end-members * - custom select end-members m - merge dilute solution from m - merge dilute solution from > - solution properties + - single phase I - possible 2-phase immiscibility J - possible 3-phase immiscibility J - standard stable phase ! - dormant (metastable) phase F - formation target phase P - precipitate target phase C - composition target L - cooLing calculation Help Factsage 8.U	tion phases Base-Phase + FTmisc-FeLQ FTmisc-MATT FTmisc-MAT2C (0 FTmisc-PYRRC FTmisc-PYRRC FTmisc-PYRRC FTmisc-FCCS FTmisc-FCCS FTmisc-MS-c ind elected 1 V Show spect solution T(C) P(atm) ▼ 1	Solution MIS Species composition Iog10 (species composition) element composition Iog10 (element composition) species activity Iog10(species activity) Iog	33FeLQ Species Code numbers (92-97) Fe, C, Mn, 92 Fe ▼ Element Elements C Mg Si S Mn Fe Element: C ▼ a range of values 'first last step'

Ferrous Processing 92

Ferrous Processing 93

	1. Now con	"C" indicates that position target for	t we h or this	ave select calculation	ed a า		
		Equilib - Menu: last system		T(C) P(atm) Energy(J) Quantity(g) Vol(l(litre)	
		Reactants (6)	94.335 Fe	+ 4.5 C + 0.5 S	3i + 0.6 Mn +	0.065 S + <a> Mg	
		Compound species gas ideal C real 0 aqueous 0 pure liquids 0 * - custom selection species: 40 Composition target Element S - FTmisc-FeLQ	Solution	phases Base-Phase FTmisc-FeLQ FTmisc-MATT FTmisc-MAT2C FTmisc-MAT2C FTmisc-PYRRC FTmisc-PCS FTmisc-FCCS FTmisc-MS-c FTmisc-MS-c	Full Nam Fe-liq Matte FeS-liq C-Liq(Matte/M C-Pyrrhotil bcd fcc fcc MeS_c Show (• all (Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Volume data o assume molar v colide and liquid 3. Press "Calcu Note that only calculation will	Details Edit olumes of late". one
2. We must I the <a> field I because <a what we wan calculate</a 	eave blank, > is nt to	Estimate ALPHA: 0.5 Quantity(g): 0 Final Conditions <a> 10 steps Table	- elem	C) P(atm)	species: solutions:	Calculation will performed.	De I + transitions open Iculate >>
		FactSage 8.0					//

GactSage[™]

Ferrous Processing 94

1. The <A> value for reducing sulphur content to 0.001% is 0.0494g.

							_
存 Equilib - Re	esults 1400 C, A=0.0494				- 🗆	\times	
<u>O</u> utput <u>E</u> dit	Show Pages Final Condition	ns					
	or f	T(C) P(atm) Energy(J	l) Quantity(g) Vol(litre	•)	111 💷 🦱	1	
					Frank Course 0. 0		
(gram) 94.	.335 Fe + 4.5 C + 0	.5 Si + 0.6 Mn	+		factbage 0.0	î	
(77777) 0 (DEER + CAN Mar -						
(gram) 0.0	vess + ∖a> ng −						
99.937	gram Fe-liq						
(99.937	7 gram, 2.0927 mol)	-1 00001					
	(1400 C, 1 atm, at (94.395 wt & Fe	=1.0000)					
	+ 4.5028 wt.% C				-	•	
					The mass	trad	ction of S is
	+ 0.60038 wt.% Mn			∠ .		na	
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S						
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si			exa	ctly what w	ve v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg)			exa	ctly what v	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component	Amount/mol	Amount/gram	EXA Mole fraction	ctly what w	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe	Amount/mol 1.6892	Amount/gram 94.335	Mole fraction 0.80721	Ctly what what what what what what what what	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn	Amount/mol 1.6892 1.0921E-02	Amount/gram 94.335 0.60000	Mole fraction 0.80721 5.2188E-03	Ctly what what what where the second	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S	Amount/mol 1.6892 1.0921E-02 3.1167E-05	Amount/gram 94.335 0.60000 9.9937E-04	Mole fraction 0.80721 5.2188E-03 1.4893E-05	Mass fraction 0.94195 6.0008E-03 1.0000E-05	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02	Amount/gram 94.335 0.60000 9.9937E-04 0.50000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03	Mass fraction 0.94195 6.0008E-03 1.0000E-05 5.0032E-03	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05	Mass fraction 0.94395 6.0000E-03 1.0000E-05 5.0032E-03 8.9384E-06	we \	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Mass fraction 0.94395 6.0000E-03 1.0000E-05 5.0032E-03 8.9384E-06 4.5028E-02	we v	want it to be.
	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what w Mass fraction 0.94395 6.00 8E-03 1.0000E-05 5.0032E-03 8.9384E-06 4.5028E-02	we v	want it to be.
+ 0.11251	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C 1 gram MgS_solid	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what what whet whet whet whet whet whet whet whe	we \	want it to be.
+ 0.1125) (0.1125	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% S + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C 1 gram MgS_solid 51 gram, 1.9960E-03 mol	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467) =1.0000)	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what what whet whet whet whet whet whet whet whe	ve v	want it to be.
+ 0.1125) (0.1125	+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C 1 gram MgS_solid 51 gram, 1.9960E-03 mol (1400 C, 1 atm, S1, at	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467) =1.0000)	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what w Mass fraction 0.94395 6.0008E-03 1.0000E-05 5.0032E-03 8.9384E-06 4.5028E-02	ve \	want it to be.
+ 0.1125) (0.1125 + 0	<pre>+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C 1 gram MgS_solid 51 gram, 1.9960E-03 mol (1400 C, 1 atm, S1, at gram C Graphite</pre>	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467) =1.0000)	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what w 0.94195 6.0008E-03 1.0000E-05 5.0032E-03 8.9384E-06 4.5028E-02	ve \	want it to be.
+ 0.1125) (0.1125 + 0	<pre>+ 0.60038 wt.% Mn + 1.0000E-03 wt.% S + 0.50032 wt.% Si + 8.9384E-04 wt.% Mg) System component Fe Mn S Si Mg C l gram MgS_solid 51 gram, 1.9960E-03 mol (1400 C, 1 atm, S1, at gram C_Graphite (1400 C, 1 atm, S1 at</pre>	Amount/mol 1.6892 1.0921E-02 3.1167E-05 1.7803E-02 3.6753E-05 0.37467) =1.0000)	Amount/gram 94.335 0.60000 9.9937E-04 0.50000 8.9328E-04 4.5000	Mole fraction 0.80721 5.2188E-03 1.4893E-05 8.5071E-03 1.7562E-05 0.17904	Ctly what w 0.94195 6.0008E-03 1.0000E-05 5.0032E-03 8.9384E-06 4.5028E-02	ve v	want it to be.

In the same manner, we can calculate the desulphurization ability of CaC₂

$CaC_2 + \underline{S} \rightarrow CaS(s) + 2\underline{C}$

存 Equilib - Reactants				- 🗆 🗡	<		
<u>F</u> ile <u>E</u> dit <u>T</u> able <u>U</u> nits <u>D</u> ata	Search Data Evaluation	Help					
🗅 🗃 + 📖	T(C) P(atm) Ener	gy(J) Quantity(g) Vol(litre)		III 📑 🕒 🕅	7 :		
1.0							
1.0					1		
Quantity(g)	Species	Phase	T(C) P(total)**	Stream# Data			
94.335	Fe	7		1			
+ 4.5	C	~		1			
+ 0.5	Si			1			
+ 0.6	Mn			1			
+ 0.065	IS I	 		1			
+ (4)			/	1			
			1	1			
We will kee	ep the same h	ot metal					
composition	n. the only thir	na we will					
change is th	n, desulphuriz	ing agent					
		ing agent					
				Initial Conditions			
	1	Next >>					
FactSage 8.0 Compound: 2/	26 databases Solution:	1/26 databases			//.		

Ferrous Processing 96

The same conditions are selected

存 Equilib - Menu: comment		- 🗆 X
<u>File Units Parameters H</u>	lp	
🗅 😂 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	M 📑 💽
Reactants (6)		
(gran	94.335 Fe + 4.5 C + 0.5 Si + 0.6 Mn + 0.065	S + <a> CaC2
Products		
Compound species	Solution phases	Custom Solutions
	* + Base-Phase Full Name	0 fixed activities Details
🔲 🖸 gas 💿 ideal 🔿 real	0 + FTmisc-FeLQ Fe-liq	0 ideal solutions
aqueous	0 FTmisc-MATT Matte	Pseudonyms
pure liquids	0 FTmisc-FeS_ FeS-liq	apply Cuit
* + pure solids	43 FTmisc-MAT2C C-Liq(Matte/Metal)	Volume data
* - custom selection	FTmisc-PYRRC C-Pyrrhotite	solids and liquids = 0
species:	43 FTmisc-BCCS bcc	C include molar volume data
	FTmisc-FCCS fcc	and physical properties data
	FImisc-MS-c Me5_cubic	paraequilibrium & Gmin edit
- none - Estimate ALPHA: 0.5 Quantity(g): 0	Legend + · selected 1 species: 6 solutions: 1	ted <u>Total Species (max 5000)</u> 49 ect <u>Total Solutions (max 200)</u> 1 <u>Total Phases (max 1500)</u> 44
Final Conditions		Equilibrium
<a> 	T(C) P(atm) Product H(J)	• normal • normal + transitions
0 1 0.01	1400 1	C transitions only C open
10 steps 🗖 Table	101 calculation	• no time limit • Calculate >>
FactSage 8.0	Vorkshop80\Ferro\Ferrous_Applications_II_p91.equi	

Ferrous Processing 97

After addition of 0.14g of CaC_2 , the amount of S in the hot metal becomes so small, that the reaction does not proceed and CaC_2 is precipitated as a solid phase.

🗃 🖼 🚮 👖	T(C) D(stee) Energy(
	ricj Flamj Energy	(J) Quantity(g) Vol(litre	e)	III 🖳 🕻
A=0 A=0.01 A=0.02 A=0.03 A=0.13 - A=0.14 - A=0.15 A=0.16	A=0.04 A=0.05 A=0.06 A 5 A=0.17 A=0.18 A=0.19	=0.07 A=0.08 A= A=0.2 A=0.21	0.09 A=0.1 A=0.1 A=0.22 A=0.23 A	1 A=0.12 =0.24
				FactSage 8.0
(gram) 94.335 Fe + 4.5 C	+ 0.5 Si + 0.6 Mr	n +		
	-			
(gram) 0.065 S + <a> CaC	2 =			
99.984 gram Fe-lio				
(99.984 gram, 2.0967 mo	1)			
(1400 C, 1 atm,	a=1.0000)			
(94.350 wt	.* Fe			
+ 4.5495 wt	.* C			
+ 1.8187E-04 wt	.% Ca			
+ 0.60010 wt	. % Mn			
+ 9.8442E-07 wt	.* S			
+ 0.50008 wt	.% Si)			
System componen	t Amount/mol	Amount/gram	Mole fraction	Mass fractic
Fe	1.6892	94.335	0.80567	0.94350
Mn	1.0921E-02	0.60000	5.2089E-03	6.0010E-03
Ca	4.5373E-06	1.8184E-04	2.1640E-06	1.8187E-06
S	3.0696E-08	9.8426E-07	1.4640E-08	9.8442E-09
Si	1.7803E-02	0.50000	8.4909E-03	5.0008E-03
с	0.37873	4.5488	0.18063	4.5495E-02
	lid			
+ 0 14674 mram CaSec				

Ferrous Processing 98

Ferrous Processing 99

Desulphurization of Hot Metal

Ferrous Processing 100

It is also convenient to compare the amounts obtained using "Composition Target"

Ferrous Processing 101

We will now apply the same calculations for the desulphurization of steel in the ladle.

The starting steel contains 0.01% S and it needs to be reduced down to 0.001% S

We will also assume that a slag is present in the ladle. It consists of 40% CaO, 40% Al₂O₃, 10% MgO and 10% SiO₂. The ratio of slag to metal is 1/10

We will now apply the same calculations for the desulphurization of steel in the ladle.

The starting steel contains 0.01% S and it needs to be reduced down to 0.001% S

We will also assume that a slag is present in the ladle. It consists of 40% CaO, 40% Al₂O₃, 10% MgO and 10% SiO₂. The ratio of slag to metal is 1/10

Desulphurization of Steel using Slag

1. Enter the metal and slag	g composition	This example can be found in EquiCase2-7.dat
File Edit Table Units Data Search Data Eva	2. In "Data Search"	select
	- Databases - 3/23 compound databases, 2/23 solution databases	ivate Databases
Quantity(g) Species	✓ FactPS FScopp BINS solutions only EXA ✓ FToxid FSlead SGPS no database ✓ salt FSstel SGTE	M 🔲 SGTEa 🔲 SGTEb
99.84 Fe + 0.05 C	Clear All Clear All FT0xCN FTfrtz Add/Remove Data	
+ 0.1 Mn + 0.01 S	FThelg ELEM SGnobl FTpulp FTdemo SpMCBN TDmeph TDmeph FTlite FTnucl	
+ 4 CaO + 4 Al2O3	-Information	
+ 1 SiO2 + 1 MgO		
+ <a> Mg	Options - search for product species Include compounds Default Default Imited data compounds (25C)	sies CxHy, X(max) = 2 ution components: ○ 1
FactSage 8.0 Compound: 3/23 databases	Cancel Summary	ΟΚ

Ferrous Processing 104

Desulphurization of Steel using Slag

		2. Select lic SlagA as t	quid steel and the solutions	
	🗘 Equilib - Menu: last system			– 🗆 X
	File Units Parameters Help			
		T(C) P(atm) Energy(J) Qua	antity(g) Vol(litre)	🚻 📑 🐼
	Reactants (9)			
	(gram) 99.84 Fe + 0.05 C	+ 0 <mark>.1 Mn + 0.01 S + 4</mark> I	CaO + 4 Al2O3 + SiO2 +	MgO + <a> Mg
	Products	tion phases		m Solutions
	Compound species Solution gas ideal C real 0 aqueous 0 pure liquids 0 * + pure solids 163 * - custom selection species: 163 Target - none - Estimate T(K): 1000 Quantity(g): 0	Hornases + Base-Phase + FTmisc-FeLQ I FToxid-SLAGA A-S Note that the s Selected with immiscibil Show selected 1	Full Name 0 fix Fe-liq 0 id Slag-liq all oxides + S 0 id Slag phase Pseu possible 0 id lity 0 all • selected cies: 47 ons: 3	m soutions ted activities Details eal solutions donyms pply Edit be data sume molar volumes of ids and liquids = 0 dude molar volume data d physical properties data aequilibrium & Gmin edit species: 184 pecies (max 5000) 210 olutions (max 200) 3 hases (max 1500) 166
1. Enter the <a>	Final Conditions	T(C) P(atm)	Equilibriu	m
and Temperature	0 1 0.01 1600	1	C transitio	ns only C open
	10 steps 🗖 Table		101 calculations - no time	imit - Calculate >>
	FactSage 8.0		4. Press "C	alculate"

Ferrous Processing 105

GactSage[™]

Results show a Equilib - Results A=0 (page 1/101) slag phase and a Output Edit Show Pages Final Conditions metal phase T(C) P(atm) Energy(J) Quantity(g) Vol(litre) 🗅 🚅 🔛 🐻 f A=0.13 A=0.14 A=0.15 A=0.16 A=0.17 A=0.18 A=0.19 A=0.2 A=0.21 A=0.22 A=0.23 A=0.24 Solid periclase A=0 A=0.01 A=0.02 A=0.03 A=0.04 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09 A=0.1 A=0.11 A=0.12 (MgO) appears as (gram) 99.84 Fe + 0.05 C + 0.1 Mn + 0.01 S + <A> is increased (gram) 4 CaO + 4 Al2O3 + SiO2 MgO + (gram) <A> Mg = We can plot the 99.975 gram Fe-lig results in the same (99.975 gram, 1.7938 mol) (1600 C, 1 atm, a=1.0000) way as was done (99.844 wt.% Fe 7.0615E-04 wt. % Al for the hot metal + 5 0012E-02 wt % C 0657E-08 wt. % Ca desulphurization in + 8.9110E-02 wt.% Mn 2958E-03 wt the previous slides + 6.0873E-03 wt.% S 6.8675E-03 wt.% Si + 1.1721E-05 wt.% Mg + 1.0673E-03 wt.% MgO + 4.2280E-04 wt.% CaO + 5.4841E-05 wt.% AlO + 4.9590E-07 wt % SiO Final Conditions T(C)P(atm) $\langle A \rangle$ $\langle B \rangle$ Product H(J) 0 1 0.01 1600 1 <

Ferrous Processing 106

www.factsage.com

101 calculations

Calculate >>

D)

ъ

FactSage 8.0

111 🖳 🕒 😿

×

Desulphurization of Steel using Mg

Ferrous Processing 107

Desulphurization of Steel using Mg

GactSage[™]

Ferrous Processing 108

1. Select sulphur from liquid steel and all elements from the slag

		Page 101.	/101 : T(C) :	= 1600, P(atm) = 1	, Al	lpha	i = 1 [min = 0 at	p. 1; max = 1 at p. 101]
-	Code	Species	Data	Phase	Τ	V	Activity	Minimum	Maximum
	403	SiO2(SLAGA)	FToxid	FToxid-SLAGA#			1.0243E-05	1.0243E-05 [101]	5.4302E-04 [1]
	404	CaO(SLAGA)	FToxid	FToxid-SLAGA#			0.1194	4.2993E-02 [1]	0.1194 [101]
	405	FeO(SLAGA)	FToxid	FToxid-SLAGA#			8.8671E-05	8.8671E-05 [101]	5.6044E-03 [1]
	406	Fe2O3(SLAGA)	FToxid	FToxid-SLAGA#			1.3084E-15	1.3084E-15 [101]	3.2612E-10[1]
	407	MgO(SLAGA)	FToxid	FToxid-SLAGA#			0.1494	0.1226 [1]	0.1494 [10]
	408	MnO(SLAGA)	FToxid	FToxid-SLAGA#			2.5909E-05	2.5909E-05 [101]	1.5016E-03 [1]
	409	Mn203(SLAGA)	FToxid	FToxid-SLAGA#			1.5600E-17	1.5600E-17 [101]	3.2695E-12 [1]
	410	AI2S3(SLAGA)	FToxid	FToxid-SLAGA#			1.9141E-18	1.9141E-18 [101]	4.3621E-17 [16]
	411	SiS2(SLAGA)	FToxid	FToxid-SLAGA#			1.9401E-16	1.9401E-16 [101]	2.7858E-14 [8]
	412	CaS(SLAGA)	FToxid	FToxid-SLAGA#			5.9758E-02	2.6124E-02[1]	6.1767E-02 [76]
	413	FeS(SLAGA)	FToxid	FToxid-SLAGA#			9.5623E-06	9.5623E-06 [101]	7.3403E-04 [1]
	414	Fe2S3(SLAGA)	FToxid	FToxid-SLAGA#			3.8240E-28	3.8240E-28 [101]	1.7076E-22 [1]
	415	MgS(SLAGA)	FToxid	FToxid-SLAGA#			4.6821E-04	4.6652E-04 [1]	9.0589E-04 [21]
	416	MnS(SLAGA)	FToxid	FToxid-SLAGA#			4.2284E-06	4.2284E-06 [101]	2.9763E-04 [1]
	417	Mn2S3(SLAGA)	FToxid	FToxid-SLAGA#	_		7.2816E-19	7.2816E-19 [101]	2.7340E-13 [1]
	956	Solution	ETmisc	ETmisc-Fel Q			1.000	1.000	1.000
	964	Solution	FToxid	FToxid-SLAGA#			1.000	1.000	1.000
	964	Solution	FToxid	FToxid-SLAGA#			1.000	1.000	1.000
	1007	All Elements	FTmisc	FTmisc-FeLQ					
	1015	All Elements	FToxid	FToxid-SLAGA#					
ď	enotes al	I the Species Proper	ties as defin	ed in the Spreadsh	ieet	Se	tup.		
		Select	All		Cle	ear		Ωĸ	
		Select	AII			an ins		∧^∽	

lib - Results A=0 (page 1/101) - - × Edit Show Pages Final Conditions T(C) P(stm) Energy(I) Quantity(g) Vol(litre) Image: State S			
Output Edit Show Pages Final Conditions	ib - Results A=0 (page 1/101) - × Edit Show Pages Final Conditions T(C) P(atm) Energy(I) Quantity(g) Vol(itre) Image: Conditions Miles Image: Conditions Image: Conditions Image: Conditions A=0.14 A=0.15 A=0.16 A=0.17 A=0.18 A=0.19 A=0.22 A=0.22 A=0.23 A=0.24 -0.01 A=0.02 A=0.03 A=0.04 A=0.05 A=0.06 A=0.09 A=0.11 A=0.12 -0.01 A=0.02 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09 A=0.11 A=0.12 -0.01 A=0.02 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09 A=0.11 A=0.12 -0.01 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09 A=0.11 A=0.12 -0.01 A=0.05 Column + 0.01 S + SectSage 8.0 A -0.1 Machine MgO + SectSage SectSage Columns: 3 Columns: 3 System Properties - - - Sected: 2 Columns: 3 Columns: 3		
T(C) P(atm) Energy(J) Quantity(g) Vol(litre) A=0.13 A=0.14 A=0.16 A=0.17 A=0.18 A=0.19 A=0.2 A=0.21 A=0.22 A=0.23 A=0 A=0.01 A=0.02 A=0.03 A=0.04 A=0.05 A=0.06 A=0.07 A=0.08 A=0.09 A=0.1 A=0.13	A=0.24 11 A=0.12	•	
(gram) 99.84 Fe + 0.05 C + 0.1 Mn + 0.01 S +	FactSage	8.0 🔺	
(gram) 4 CaO + 4 Al2O3 + SiO2 + MgO + Spreadsheet Setup (gram 9: Property columns 1		×	
Column: -1 - Variable: Alpha			
Species Properties Species Columns per species I Column: ·1 · Variable: Wt%	Columns: 3 Cancel Default		
Selected: 2	OK		1. Press "OK" on this window and
<a> T(C) P(atm) Product H(J) 0 1 0.01 1600 1	101 calculation	s ×	the next one
		>:	

Ferrous Processing 111

1. A spreadsheet with the composition of slag and metal at each <Alpha> value will appear.

2. It is convenient to copy the whole table and paste it in Excel.

🝞 Equilib Results ile Edit Swa	p rows and colum	ns					-	
Alpha	₩t%-S(FeLQ)	Wt%-Fe_FToxid-SLAGA#1	Wt%-Mn_FToxid-SLAGA#1	Wt%-Ca_FToxid-SLAGA#1	Wt%-S_FToxid-SLAGA#1	Wt%-Si_FToxid-SLAGA#1	Wt%-AI_FToxid-SLAGA#1	Wt%-Mg_FTox
0.000000E+00	6.0872865E-03	2.0547678E-01	1.0870141E-01	2.8513378E+01	3.9044801E-02	4.5942107E+00	2.1109887E+01	6.008795
1.000000E-02	5.5225548E-03	1.6564708E-01	8.8667249E-02	2.8510641E+01	4.4667417E-02	4.5581833E+00	2.1105213E+01	6.107786
2.0000000E-02	5.0337812E-03	1.3913174E-01	7.4715083E-02	2.8504557E+01	4.9527274E-02	4.5157601E+00	2.1097873E+01	6.206024
3.0000000E-02	4.6167677E-03	1.2065334E-01	6.4657395E-02	2.8496514E+01	5.3667022E-02	4.4693002E+00	2.1089018E+01	6.303784
4.0000000E-02	4.2585811E-03	1.0711369E-01	5.7090835E-02	2.8487309E+01	5.7216547E-02	4.4202732E+00	2.1079294E+01	6.401224
5.000000E-02	3.9470613E-03	9.6751746E-02	5.1175530E-02	2.8477384E+01	6.0297849E-02	4.3695512E+00	2.1069051E+01	6.498433
6.000000E-02	3.6726691E-03	8.8536064E-02	4.6402166E-02	2.8466994E+01	6.3006610E-02	4.3176633E+00	2.1058484E+01	6.595464
7.000000E-02	3.4282375E-03	8.1834264E-02	4.2450319E-02	2.8456290E+01	6.5414709E-02	4.2649440E+00	2.1047707E+01	6.692345
8.000000E-02	3.2083949E-03	7.6240456E-02	3.9110084E-02	2.8445368E+01	6.7576026E-02	4.2116136E+00	2.1036788E+01	6.789098
9.0000000E-02	3.0141722E-03	7.1490402E-02	3.6277282E-02	2.8441841E+01	6.9499072E-02	4.1589003E+00	2.1031348E+01	6.871593
1.000000E-01	2.8712463E-03	6.7434155E-02	3.4058621E-02	2.8490517E+01	7.1041455E-02	4.1131828E+00	2.1064473E+01	6.856172
1.1000000E-01	2.7408098E-03	6.3883364E-02	3.2101881E-02	2.8539279E+01	7.2464348E-02	4.0670142E+00	2.1097652E+01	6.840637
1.200000E-01	2.6209568E-03	6.0739609E-02	3.0357977E-02	2.8588138E+01	7.3786197E-02	4.0204494E+00	2.1130891E+01	6.825014
1.300000E-01	2.5101776E-03	5.7929062E-02	2.8789783E-02	2.8637101E+01	7.5021608E-02	3.9735304E+00	2.1164190E+01	6.809320
1.400000E-01	2.4072591E-03	5.5395195E-02	2.7368663E-02	2.8686175E+01	7.6182305E-02	3.9262900E+00	2.1197550E+01	6.793570
1.500000E-01	2.3112135E-03	5.3093943E-02	2.6072142E-02	2.8735364E+01	7.7277833E-02	3.8787543E+00	2.1230973E+01	6.777776
1.600000E-01	2.2212269E-03	5.0990405E-02	2.4882312E-02	2.8784673E+01	7.8316045E-02	3.8309447E+00	2.1264456E+01	6.761945
1.700000E-01	2.1366218E-03	4.9056552E-02	2.3784707E-02	2.8834103E+01	7.9303478E-02	3.7828785E+00	2.1297998E+01	6.746087
1.800000E-01	2.0568285E-03	4.7269589E-02	2.2767501E-02	2.8883659E+01	8.0245624E-02	3.7345702E+00	2.1331599E+01	6.730205
1.900000E-01	1.9813636E-03	4.5610765E-02	2.1820916E-02	2.8933341E+01	8.1147135E-02	3.6860323E+00	2.1365257E+01	6.714306
2.0000000E-01	1.9098140E-03	4.4064505E-02	2.0936793E-02	2.8983153E+01	8.2011988E-02	3.6372753E+00	2.1398970E+01	6.698393
2.1000000E-01	1.8418238E-03	4.2617746E-02	2.0108258E-02	2.9033096E+01	8.2843605E-02	3.5883085E+00	2.1432736E+01	6.682468
2.2000000E-01	1.7770845E-03	4.1259446E-02	1.9329477E-02	2.9083171E+01	8.3644951E-02	3.5391399E+00	2.1466554E+01	6.666535
2.300000E-01	1.7153267E-03	3.9980196E-02	1.8595457E-02	2.9133381E+01	8.4418610E-02	3.4897770E+00	2.1500421E+01	6.650596
4								

1. All unnecessary columns were deleted keeping only the sulphur content in the steel and the slag.

2. The last column was used to calculate the sulphur partition coefficient Ls.

_	AutoSave 🤇	· ■ ∃ ≤)~ (~ e		xls - Compa	tibility Moo	de - Excel	P	Search				I (Yoor	igu Kang 🏼 🤞	3 📼	-		×
F	File Ho	me nsert	Page Layou	Formul	as Data	Revie	w Vie	v Deve	loper H	elp								ල් Sha	are 🖓 🗘	Comment	ts
P	Cur Paste	t py → rmat Pairter	B I <u>∪</u> ~	- <u>11</u>		= = =	& ~ ≝ ∋≣	& Wrap T ∰ Merge	ext & Center 🗸	Number \$~9	5 9 <u>50 30</u>	Conditional	Format as	Cell In:	sert Delete	Format	∑ AutoSun ➡ Fill ~ � Clear ~	Sort &	Find &	Ideas	
	Clipboa	rd 🗔	F	ont	Γ <u>3</u>		Alignr	ment	ſ	<u>s</u> Nu		Dlatt	ina /	\lnh		ining		~/I ~		Ideas	~
SI	UMIFS	- : / ×	🖌 fx	OG(C2/B2)	1							. 101	ing F	λιρπά	a ay	Jains	st iog	J(LS)		~
						-	-	C	. u			K I		- N		D	0	 		-	
1	Alpha	Wt%-S(FeLO)	Wt%-S_FToxi	d-SLAGA#1	log(LS)	E	F	9	п			K L	IVI	IN	0	P	ų	n	3		٦FI
2	0.00E+00	0.01		0.04	32)																
3	1.00E-02	0.01		0.04	0.91		3.	5													
4	2.00E-02	0.01		0.05	0.99																
5	3.00E-02	0.00		0.05	1.07		3.	0													
6	4.00E-02	0.00		0.06	1.13		-	-													
7	5.00E-02	0.00		0.06	1.18		2.	5													
8	6.00E-02	0.00		0.06	1.23		<u> </u>	~													
9	7.00E-02	0.00		0.07	1.28		<u>ମ</u> ଅ.	0													
10	8.00E-02	0.00		0.07	1.32		0 1	5													
11	9.00E-02	0.00		0.07	1.36		I.														
12	1.00E-01	0.00		0.07	1.39		1	0													_
13	1.10E-01	0.00		0.07	1.42		1.	ັ 🖡													_
14	1.20E-01	0.00		0.07	1.45		0.	5													_
15	1.30E-01	0.00		0.08	1.48																- 11
16	1.40E-01	0.00		0.08	1.50		0.	0													_
17	1.50E-01	0.00		0.08	1.52			0.00	0.20	0.40	0.60	0.80	1.00								_
18	1.60E-01	0.00		0.08	1.55			0.00	0.20	0.40	0.00	0.80	1.00								_
19	1.70E-01	0.00		0.08	1.57						Alpha										-
20	1.80E-01	0.00		0.08	1.59																-
21	1.90E-01	0.00		0.08	1.61																-
22	2.00E-01	0.00		0.08	1.63																-
23	2.10E-01	0.00		0.08	1.65																_
24	2.20E-01	0.00		0.08	1.67																
		Sheet1	\oplus									:									F
Ed	lit 💽																		1	- + 100	0%

A good way of comparing the ability of a slag to absorb sulphur is the sulphide capacity calculated in the following manner:

 $C_{S} = (S_{in slag})^{*} (P_{O2}/P_{S2})^{1/2}$

In the following slides, the sulphide capacity of four different slags will be calculated

Steelmaking	BOF	Slag	Ladle Fu	nace Slag
Slag Parameters	Type 1	Type 2	Type 1	Type 2
	Low-P Hot Metal	High-P Hot Metal	Al-Killed Steel	Si- Killed Steel
CaO	44.0	54.0	53.0	55.0
MgO	9.0	1.0	9.0	9.0
SiO2	13.0	14.0	5.0	20.0
Al2O3	1.8	1.0	30.0	12.0
Fe (total)	18.0	19.0	1.0	1.0
MnO	4.5	0.5	1.0	0.6
s	0.07	0.06	0.50	0.50
P2O5	2.00	3.50	0.05	0.05
TiO2	1.0	<0.5	<0.5	<0.5
Slag Basicity (CaO / SiO2)	3.4	3.9	10.6	2.8
Slag Basicity (CaO +MgO) / (SiO2+Al2O3)	3.6	3.7	1.8	2.0

1. Enter the amount and sp the first slag	ecies for	This example can be found in EquiCase2-13.dat
Equilib - Reactants	—	<
File Edit Tatle Units Data Search Data Evalua	🝞 Data Search	×
□ 🛩 🕂 📰 T(C) P(at	– Databases - 2/23 compound databases, 1/23 solution databa	ases
1.9]	Gact GactSage" SGTE compounds only	Private Databases
	✓ FactPS FScopp BINS solutions only ✓ FToxid FSlead SGPS no database	<mark>□ EXAM</mark> □ SGTEa □ SGTEb
Quantity(g) Species	Fisalt Fissel State Fisalt Fissel State Fisalt Clear All	
44 CaO	FThall	
* 9 MgO	FTfrtz Other Add/Remove Data	
* 13 SiO2	FTpulp FTdemo SpMCBN RefreshDatabases	
* 1.8 Al203	TDmeph	
* 18 Fe		
* 4,5 Mn0	Cick on a box to include (or exclude) a database in the data search. Norn	nally databases are 'coupled' - that is both the
* 0.07 S		neouple a databases click-modsenight-button
+ 2 P205	2. Select FactPS and Ftoxid	atabase to the list' - click on 'Add/Remove'.
+ 1 TiO2	databases	
	Options - search for product species	
	Default Include compounds L gaseous ions (plasmas) Or aqueous species M limited data compounds (25C) M	imits rganic species CxHy, X(max) = 2 inimum solution components: O 1 O 2 cpts
FactSage 8.0 Compound: 3/23 databases Sol	Cancel Summary	ОК

Ferrous Processing 115

1. Select gas and SlagA as possible products

	存 Equilib - Menu: last system		- 🗆 X
	File Units Parameters Help		
		T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🚻 📑 💽
	Beautants (9)		,
	(gram) 44 CaO + 9 MgO + 13 9	D2 + 1.8 Al2O3 + 18 Fe + 4.5 MnO +	0.07 S + 2 P205 + TiO2
	Products		C + C + C
		phases Base-Phase Full Name	A fixed activities Details
	∓ gas	FToxid-SLAGA A-Slag-liq all oxides + S	0 ideal solutions
	aqueous 0		Pseudonyms
	pure liquids 0		apply Current apply
	j pure solias U		assume molar volumes of
			solids and liquids = 0
	species: 55		and physical properties data
	Turnet		🗖 paraequilibrium & Gmin 🔄 edit
	- none - Legen	scible 1 🔽 🔽 Show 🔿 all 💿 selected	Virtual species: 352
	Estimate T(K): 1000	species: 44	Total Species (max 5000) 103
ate	Quantity(g): 0	solutions: 2 Select	Lotal Solutions (max 200) 4 Total Phases (may 1500) 3
	Final Conditions		quilibrium
e		(C) P(atm)	hormal O hormal + transitions
580.			transitions only O open
° C		2 Drace "Coloulate"	Calculate >>
C		3. Press Calculate	
	FactSage 8.0		

2. We will calculate the sulphide capacity at three temperatures: 1580, 1600 and 1620°C

It is now possible to calculate the sulphide capacity using these results.

In the next slides, two ways of calculating sulphide capacity will be demonstrated.

存 Equilib - Results 1580 C (pa	ge 1/3)	- 🗆 X
Output Edit Show Pages E	inal Conditions	
D 🗃 🖾 📰 🛐 1580 C 1600 C 1620 C	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	11 🕞 🕒 🕱
		FactSage 8.0 A
(gram) 44 CaO + 9 Mg	0 + 13 SiO2 + 1.8 A12O3 +	racobage oto in
(gram) 18 Fe + 4.5 M	nO + 0.07 S + 2 P2O5 +	
(gram) TiO2 =		
0.25836 mol ga	s_ideal 36 mol 39 287 litre 3 03228-04 gram cm-3)	
(11.512 gram, 0.258) (1580 C 1	atm a=1 0000)	
(0,41969	Fe	
+ 0.31259	Ma	
+ 0.21176	Mn	
+ 5.4274E-0	2 P2	
+ 1.5083E-0	3 Ca	
+ 1.2401E-0	4 P4	
+ 2.9676E-0	5 P	
+ 1.7819E-0	5 Mg2	
+ 1.0388E-0	5 SiO	
+ 3.8851E-0	7 PO	
+ 8.5797E-0	8 Al	
+ 5.5088E-0	8 FeO	
+ 8.0970E-0	9 Si	
+ 2.0679E-0	9 Ca2	
- Final Conditions	N-0	
<a>	 T(C) P(atm) Product	H(J) 3 calculations
	1580 1620 20 1	
		Calculate >>
<		> .:

The first way is to use	e Excel	1. Save the a text spr	e results in eadsheet		
Press "Output" → "Save or Print As"	Equilib - Results 1580 C Utput Edit Show Pages E E E E E E E 1580 C 1600 C 1620 C	(page 1/3) Final Conditions T(C) P(atm) Energy(J) Quantity(<u>c</u>	g) Vol(litre)	
	(gram) 44 CaO + 9 (gram) 18 Fe + 4.5 (gram) TiO2 = 0.25836 (11.912 gra (1 (0) + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	Mg0 + 13 SiO2 Mn0 + 0.07 S t ge Range All 3 pages Current page 1 ancel ons (B) 158	1.8 Al203 + 2 P205 + "Spr ype of Ou Printer Printer Printer Text file (*.txt) Equilib Results File (Eq Xml file (*.tml) Excel Spreadsheet Open Text Spreadsheet Save Text Spreadsheet Swap rows & columns T(C) P(at 30 1620 20 1	2. Press eadsheet setu setup qui*.res) et Spreadsheet setup tt TTM Product H(J)	FactSage 8.0 A

Equilib - Results 1580 C (page 1/3)	—		×
Output Edit Show Pages Final Conditions			
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	111	🖳 🕒	. 7
1580 C 1600 C 1620 C			
(m 1 Set T(C) as the 2 + 1 + 11203 +	FactS	Sage 8.0	^
(gr System property s + 2 P205 +			
(grai Spreadsheet Setup		— X	
Custom Branastica			
Property columns			
Variable: T(C)			
Species Properties Species	Column	ns: 1	
Columns per species 2 🗘 O order species 💿 order props.			
Column: -12 - Select	Can	cel	
Variable: Wt% a	Defa	ault	
Selected: 0			
	. <u>the end</u>		
2. We need wt%S and the activity of	the s	pecies	S
O and S in the gas so select "wt%"	Calculat	e >>	~
and "a" as the species properties		>	н. Ш

GactSage[™]

1.	Select O	2(g), S2	2(g) and										1
	All Elem	ents	s in S	SlagA	3/3 : T(C) :	= 1620, P(atm) =	: 1						×	
		File	Edit S	how Select Stab	le									
		Selec	ted: 4/87] Spreadshe	et Species				3] - [3	3 🔽 (pag	je]	
				Page 3/	3 : 1(C) = 16	520 [min = 1580 at	pag	je 1.	; max = 1620 a	it page 3j, P(atm) = 1				
		+	Code	Species	Data	Phase	Τ	۷	Activity	Minimum		Maximum		
			1	0(g)	FactPS	gas			1.6997E-13	1.6997E-13 [1]	5.7	7303E-13 [3]		
		+	2	02(g)	FactPS	gas			7.4406E-19	7.4406E-19[1]	- 4.7	2019E-18 [3]		
			3	03(g)	FactPS	gas			1.6600E-35	1.6600E-35 [1]	2.7	7199E-34 [3]		
			4	Mg(g)	FactPS	gas			0.3126	0.3126 [1]	0	.3139 [3]		
			22	PO(g)	FactPS	gas			8.1052E-07	3.8851E-07 [1]	8.1	1052E-07 [3]		
			23	P02(g)	FactPS	gas			3.1717E-11	9.5129E-12 [1]	3.1	1717E-11 [3]		
			24	P205(g)	FactPS	gas			1.1650E-28	8.3620E-30 [1]	1.1	1650E-28 [3]		
			25	(P2O3)2(g)	FactPS	gas			8.1479E-22	1.2887E-22 [1]	8.1	1479E-22 [3]		1
			26	(P205)2(g)	FactPS	gas			1.1847E-55	1.4682E-57 [1]	1.1	1847E-55 [3]		
			27	S(g)	FactPS	gas			3.8457E-12	1.3485E-12 [1]	3.6	8457E-12 [3]		
		+	28	S2(g)	FactPS	gas			6.1835E-18	1.3827E-18 [1]	6.1	1835E-18 [3]		
			29	S3(g)	FactPS	gas			7.1013E-29	8.0337E-30 [1]	7.1	1013E-29 [3]		
			30	S4(g)	FactPS	gas			2.4192E-39	1.3890E-40 [1]	2./	4192E-39 [3]		
			31	S5(g)	FactPS	gas			6.6612E-51	2.0529E-52 [1]	6.6	6612E-51 [3]		
			32	S6(g)	FactPS	gas			8.5441E-61	1.3578E-62 [1]	8.5	5441E-61 [3]	1	
			33	S7(g)	FactPS	gas			8.5252E-71	6.7937E-73 [1]	8.5	5252E-71 [3]	1	
			1194	Solution	FToxid	FToxid-SLAGA#			1.000	1.000		1.000	1	
			1247	All Elements		GAS							1	
		+	1251	All Elements	FToxid	FToxid-SLAGA#								
	•	+	1251	All Elements	FToxid	FToxid-SLAGA#								
													- I	
			Ienotes al	I the Species Proper	tion on define	ad in the Spreadok	امما	Sah			_			
			ienotes al	i trie species Froper	ues as uenni	eu in me opreausr	ieet	580	up.				_	1
					1				1		_	2. Pr	es	s "OK" on
				Select	All		Cle	ear		ОК 🗲			200	
												th	ree	e screens

1. All the needed results (and even more) appear in the spreadsheet.

	🕴 Equilib Results									-		Х
F	File Edit Swap rows and columns											
	T(C)	₩t%-02(g)	₩t%-S2(g)	a-02(g)	a-S2(g)	Wt%-Fe_FToxid-SLAGA#1	Wt%-Mn_FToxid-SLAGA#1	Wt%-Ti_FToxid-SLAGA#1	Wt%-Ca_FToxid-SLAGA#1	₩t%-S_	FT oxid-S	JLAGA#
	1.5800000E+03	5.1637146E-17	1.9231229E-16	7.4406462E-19	1.3826999E-18	1.4663848E+01	5.8864892E-01	7.3577311E-01	3.8585457E+01	8.	5934254E	-02
	1.600000E+03	1.2396872E-16	4.1051196E-16	1.7854731E-18	2.9501184E-18	1.4653391E+01	6.0921013E-01	7.3574367E-01	3.8582714E+01	8.	5930795E	-02
	1.6200000E+03	2.9188401E-16	8.6085431E-16	4.2018929E-18	6.1835344E-18	1.4642836E+01	6.2987870E-01	7.3571473E-01	3.8579942E+01	8.	5927386E	-02
	1											Þ

2. Copy the results in Excel and delete the unnecessary columns

Another way to plot the function builder	e sulphide ool couple				
	存 Equilib - Results	s 1580 C (page 1/3)		-	– 🗆 ×
	Output Edit Sho	w Pages Final Con	ditions		
	Save or Print A	s	T(C) P(atm) B	Energy(J) Quantity(g) Vol(litre)	M 🖳 🕞 😿
	Repeat Open S	preadsheet			
	Plot	>		a 11000 - L	FactSage 8.0 🔺
	Equilib Results	file >	3 5102 + 1	6 A1203 +	
	Format	>	0.07 5 + 2	P205 +	
	East VMI				
	Fact-AIVIL	/	39 287 litr	e 3 0322E-04 gram cm-3)	
	Fact-Optimal	>	a=1.0000)	-,	
	Fact-Function-	-Builder >	Select fund	ction group(s)	>
	Refresh		Always cal	culate function groups(s) - (nothing selected)	:d)
	Swap loops		Ketresh Ke	sults	
1 Press "Edit/Crea	ate +	2.9676E-05	Edit function	on group	>
functions" under the		1.0388E-05	Edit/create	e functions	<u>```</u>
Function Builder M	4CL- +	8.5797E-08	Delete fun	ction group	>
Function-Builder M	+ +	5.5088E-08 8.0970E-09	Summary	of function groups	
	+	2.0679E-09	Fact-Funct	tion-Builder Silde Show	
	Final	<a> <{	3> T((C) P(atm) Product H(J)	3 calculations X
			1580 162	20 20 1	Calculate >>
	<				>:

1 Managed to cale at utl/ C as and	🕞 Function Builder	- 🗆 X
T. We need to select wt%5 as one	File Help	
variable	Variables List Clear Preview results	Copy to clipboard
Vanabio		
	f1 = Operations: * + - / () ^ abs, In, log, exp, cos, sin, tg, arcsin, arccos, arctg or arctan, sg	+ Review results
2 Select "Amount/Composition"	Variable selection	
	Amount/Composition	+ variable
under "Variable selection"		
	Species Phase Data Amount/Co MIN MAX	Pseudonym A
	Ti (total) Slag-lig#1 5.8665-01 1.9495-09 1.466	iE+01
	🔆 Ca (total) Slag-liq#1 3.859E+01 1.949E-09 3.859	Æ+01
	S (total) Add to variables list 3E-02 1.949E-09 3.855	E+01
4. Right-click on S(total) in slag	P (total) 7E-07 1.949E-09 3.855	/E+01
and add it to variables list	Al (total) Slag-lig#1 7.460E+00 1.949E-09 3.859	E+01
and add it to variables list	Mg (total) Slag-lig#1 4.253E+00 1.949E-09 3.855	E+01
	🔆 O (total) Slag-liq#1 3.246E+01 1.949E-09 3.855	IE+01
	🙀 Al2O3 Slag-liq#2 FToxid 0.000E+00 0.000E+00 0.000	Æ+00
	SiD2 Slag-lig#2 FToxid 0.000E+00 0.000E+00 0.000E	/E+00
	⊂ mol ⊂ mol fract. ⊂ gram ⊂ Wt. f	ract. ₩t. % Okg Olb
	3. Select "w	t%"

www.factsage.com

	Function Builder File Help			- 🗆 X	
	variables List wtS : Amount/Composit aO2 : Activity (O2/Gas) aS2 : Activity (S2/Gas) G	ion (S (total)/Slag-liq#1)) wt.%	Preview results Page f1 = log(w) 1 -1.200392 2 -1.174894 3 -1.149764	Lopy to clipboard ts*SQRT(aO2/aS2))	3. Note that the results are the
1. Enter the fur	nction for log	(Cs)			same as for the
	L		✓		
	Functions				Excer
	f1 = log(wtS*SQRT	(aO2/aS2))		+ R Preview results	calculation
	Operations: * + - /	() ^ abs, In, log, exp, cos, sin, tg, arc	sin, arccos, arctg or arctan, sgn or sig	gn, sg	
	Variable selection				-
		Activity *		+ variable	
	Selection Species/phases:	2. Press	s "preview resu	ults"	
	Species	Phase Data Ac	tivity MIN MAX	Pseudonym 🔺	
	P0 P02 P205 (P203)2 P205)2 S	GasFactPS3.8GasFactPS9.5GasFactPS8.3GasFactPS1.2GasFactPS1.4GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3GasFactPS1.3ComolComolC	85E-07 3.885E-07 8.105E-07 13E-12 9.513E-12 3.172E-11 62E-30 8.362E-30 1.165E-28 89E-22 1.289E-22 8.148E-22 68E-57 1.468E-57 1.185E-55 49E-12 1.349E-12 3.846E-12 83E-18 1.383E-18 6.184E-18 34E-30 8.034E-30 7.101E-29 89E-40 1.389E-40 2.419E-39 53E-52 2.053E-52 6.661E-51 58E-62 1.358E-62 8.544E-61 901 fract. O gram Wt. fract.	♥ Wt. % C kg C lb	
				Close	

	Function Builder	- 🗆 X
1. Save the function as "Sulphide_Capacity"	Save current functions group clear Preview results Open > g-liq#1)) wt.% Page f1 = log(wtS* Rename > Delete > 1 -1.200392 J J J J J J	Copy to clipboard SQRT(aO2/aS2))
	K Name X Fu Fu Please enter a name for this system : + Sulphide_Capacity cos, arctg or arctan, sgn or sign,	Q Preview results
	Vari OK Cancel Image: Selection Species/phases:	+ variable
	Species Phase Data Activity MIN MAX PO Gas FactPS 3.885E-07 3.885E-07 3.885E-07 3.172E-11 PO2 Gas FactPS 9.513E-12 9.513E-12 3.172E-11 PO2 Gas FactPS 8.362E-30 8.362E-30 1.165E-28 PO312 Gas FactPS 1.289E-22 1.289E-22 8.148E-22 PO20512 Gas FactPS 1.468E-57 1.468E-57 1.165E-28 PO20512 Gas FactPS 1.349E-12 1.349E-12 3.846E-12 PO312 Gas FactPS 1.383E-18 1.383E-18 6.184E-18 PO315 S3 Gas FactPS 8.034E-30 8.034E-30 7.101E-29 PO315 S4 Gas FactPS 1.389E-40 1.389E-40 2.419E-39 PO315 S5 Gas FactPS 1.358E-62 2.053E-52 8.661E-51 PO315 S6 Gas FactPS 1.358E-62	Pseudonym A
2. Close the window	C mol C mol fract. C gram C Wt. fract. C	Wt. % C kg C lb
GactSage™	www.fa	ctsage.com

↓ <u>Q</u> ut	Equilib - Results 1580 C (page 1/3) tput Edit Show Pages Einal Conc Save or Print As Repeat Open Spreadsheet Plot >	litions T(0	1. Go back to window, and "Sulphide_Cap gro	the "Results" d select the pacity" function	
	Equilib Results file > Stream File > Format > Fact-XML > Fact-Optimal > Fact-Function-Builder > Refresh Swap loops	3 5102 + 1.8 A1203 + 0.07 S + 2 P205 + 39.287 litre, 3.0322E-0 - a=1.0000) Select function group(s) Always calculate function group (s) - Refresh Results -	4 gram.cm-3) groups(s) [3.]	 Fe-N_Sievert SiO2-MnO_S_capacity Sulphide_Capacity 	
2. Check "A calculate fu groups	+ 2.9676E-05 + 1.7819E-04 5 Netion 99 99 99	Edit function group Edit/create functions Rename function group Delete function group Summary of function grou Fact-Function-Builder Sild	> > s	3. Click "Refre	sh Results"
	+ 7.0833E-10 + 1.8943E-10 + 1.2354E-10 + 1.0775E-10 + 1.0072E-10 + 8.2632E-11 + 4.1530E-11 + 5.5129E-12 + 4.0474E-12 + 3.1491E-13 + 2.1746E-13 + 1.6997E-13 + 1.3338E-13 + 1.3338E-13 + 5.9350E-15 + 4.7773E-15 + 1.0567E-15	MgS CaO Al2O TiO Ti CaS PO2 AlO S SiO2 Si2 O TiO2 AlS Al2 Al2O2	nditions > T(C) 1580 1620 20	P(atm) Product H(J)	calculations × Iculate >>

1. A separate	Equilib - Results Functions Output Edit Show Pages Final Conditions	- 0	×
appear with the	□ □ □ Image: Constraint of the second	<u>_111</u> 🖳	1 🕞 😿
results of the calculations	Group Name : 3. Sulphide_Capacity wtS : Amount/Composition (S (total)/Slag-liq#1)) wt.% aO2 : Activity (O2/Gas) aS2 : Activity (S2/Gas)		
,	Page $f1 = \log(wtS*SQRT(aO2/aS2))$		
	1 -1.200392 2 -1.174894 3 -1.149764		
	Equilib - Results 1580 C (page 1/2)	- 0	×
	Output Edit Show Pages Final Conditions Image: Final Conditions T(C) P(atm) Energy(J) Quantity(g) Vol(litre) Functions -1580 C - 1600 C 1620 C	111 🖳	v 🕒 😿
2. Each tab will have the	Group Name : 3. Sulphide_Capacity wtS : 0.8593426E-01 : Amount/Composition (S (total)/Slag-liq#1)) wt.% aO2 : 0.7440646E-18 : Activity (O2/Gas) aS2 : 0.1382700E-17 : Activity (S2/Gas)		^
information on the function along with	Page fl = log(wt 1 -1.200392		
the calculated	(gram) 44 CaO + 9 MgO + 13 SiO2 + 1.8 Al2O3 +	FactSage	8.0
equilibrium.	(gram) 18 Fe + 4.5 MnO + 0.07 S + 2 P2O5 +		
	(gram) TiO2 =		

Cutput	lib - Results Functions Edit Show Pages Fina	al Conditions	1. In order to plot the sulphide capacity as a function of				
		T(C) P	(atm) Energy(J) Q	uantity(g) Vol(litre)			
Function	1580 C 1600 C 1620	c)			-		
Group	XML Viewer - [C:\W	ORKSHOP80\Xml	_out.xml]	2 Thon	solart	_	
wtS	File Units Tools G	raph <u>H</u> elp					
a02 aS2	🗘 🖬 💾 🔑 🖉	Setup	Tree	Graph –	→ Setup		
Page	Page P	age 1 -	1580 C	-			~
	2 1600 C 3 1620 C	Tram) 44 (a)	$\pm 9 \text{ Marc} \pm$	13 SiO2 ± 1 8	11203 ± 18 Fe	+ 4 5 MpO + 0 07 5 4	<u>2 P</u> 205 +
2	Grap	h - Setup					×
3	Saveo	d graphs J E	unction Builder	L			
	-Vai wtS	riables : Amount/Col	Edit functions	1 13 Å		Figure Settings Font size :	10
Page	a02	2 : Activity (02	Import	2 - SiO2-Mn	O S capacity	# 1=b=ls === line -	n
1	G	Activity (327 4 43)		3 - Sulphide	Capacity 🧲	- 3. Imp	ort the
3	j.		v	1580	T (C)	"Sulphide Car	pacity" function
	Y-	-Axis			X-Axis		
		Functions	• Y	 + variable 	Temperatu	ure → X → + va	ariable
		$f1 = \log(wtS^*sq)$	rt(a02/aS2))		f =		
	MIN	N MAX	S1	TEP Label every	MIN MAX	STEP Label	every
	-1.3	-1.13	Default 0.	01 0.0079995	1580 1620	Default 1 4	
	L.	Y LX					~
<	Spe	ecies/phases :	Dhave	Data	L 41KI	Dunderer	

Slag cooling and heating (Enthalpy diagram)

- When slag forms from pure oxides, a certain amount of heat (enthalpy) is needed.
- When slag is cooled down, a certain amount of heat should be extracted.
- FactSage Phase diagram: Enthalpy diagram

Heat required to form and increase temperature of slag

存 Data Search]
Databases - 2/23 compound databases, 1/23 solution database Cact CactSage [®] SGTE Compounds only Solutions only Solutions only	$\Delta H = H_{final} - H_{initial}$ So initial conditions(phase,T,P) should be defined
✓ FToxid FSlead SGPS no database ✓ FTsalt FSstel SGTE ✓ FTmisc FSupsi SGsold Clear All ✓ FThall ✓ ✓	ilib - Reactants — 🗆 🗙
FTOxCN Other Add/Remove Data FTfrtz SGnobl FThelg ELEM SGnobl FTpulp FTdemo SpMCBN TDmeph TDnucl	lit Table Units Data Search Data Evaluation Help + T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
•	Quantity(g)SpeciesPhaseT(C)P(total)**Stream#Data <a>Mg0solid-FactPS Periclase251.01FactPS<1-A-B>Fe0solid-FactPS Wustite251.01FactPSSi02solid-1-FactPS Quartz251.01FactPS
FactSage can used two variables, < < <a> can be really varied and si	A> and hould be constant
	** Down in the hydrostatic pressure above the phase.
Pure FeO(s) is not in FToxid comp (Strictly speaking, FeO is non-stoi compound so it is in MeO solution	Chiometric
FactSac	Next >> je 8.0 Compound: 2/23 databases Solution: 1/23 databases

GactSage[™]

Heat required to form slag and increase the temperature of slag

Heat required to form slag and increase the temperature of slag

Ferrous Processing 137

存 Phase Diagram - Menu: comm	ents		- 🗆 X			
File Units Parameters Variable	es Help					
	T(K) P(atm) Energy(J	l) Quantity(g) Vol(litre)	🚻 📑 💌			
Components (3)						
	(gram) MgO +	FeO + SiO2				
Products						
Compound species	Solution phases		Custom Solutions			
	* + Base-Phase	Full Name	0 fixed activities Details			
📔 🔲 gas 💿 ideal 🔿 real 🛛 0	I FToxid-SLAGA	A-Slag-liq all oxides + S	U ideal solutions			
aqueous 0	FT oxid-SPINA	A-Spinel	Pseudonyms			
pure liquids 0	I FToxid-MeO_A	A-Monoxide	apply Current apply			
* + pure solids 37	+ FToxid-cPyrA	A-Clinopyroxene	Volume data			
× - custom selection	+ FToxid-oPyrA	A-Orthopyroxene	 assume molar volumes of solids and liquids = 0 			
species: 37	+ FToxid-pPyrA	A-Protopyroxene	include molar volume data			
	+ FToxid-OlivA	A-Olivine	and physical properties data			
🗖 paraequilibrium & Gmin edit						
Legend Show 🖸 all O selected						
	I - immiscible 2		Total Species (max 5000) 91			
Estimate I (K): 11000	+-selected 4	species: 54 Select	Total Solutions (max 200) 8			
		solutions: 8	Total Phases (max 1500) 45			
Variables Phase Diagram						
T(min) H(max) SiO2/(MgO+FeO	Mg0/(Mg0+Fe0					
200.3000 0.3 (min)	007		ΥL			
H - H200 K (J/g) vs Mg0/(Mg0+Fe	0+SiO2)					
FactSage 8.0 C:\\3_9	Slag_cooling_and_heating_03.ph	as	/			

😯 Variables: MgO-FeO-SiO2 H - H200 K (J/g) vs composition #1.	
Variables Y compositions A C A C A C X,Y steps 11 Next >> - T and P - T emperature - Pressure or Volume Pressure or Volume enthalpy Y T and P Temperature Pressure or Volume Pressure or Volu	—— Enthalpy diagram option —— T _{initial} —— Iso-Temperature
Compositions Quantity(g) Fe0 + 1 SiO2 constant #1. $Mg0 + 1$ Fe0 + 1 SiO2 = #1 log10(composition) $0.3 (min)$ #2. $1 Mg0 + 1$ Fe0 + 1 SiO2 = 1 Mg0 + 1 Fe0 + 1 SiO2 $\overline{\cdot axis}$ #2. $1 Mg0 + 1$ Fe0 + 1 SiO2 = $1 Mg0 + 1$ Fe0 + 1 SiO2 $\overline{\cdot axis}$ $1 Mg0 + 1$ Fe0 + 1 SiO2 $\overline{\cdot axis}$ $0.7 (max)$ $\overline{0} (min)$	<u>30</u> %SiO ₂
Cancel	

- Only X-Y type diagram allowed.
- Y axis should be Enthalpy (H-H_{Tmin}).
- H_{initial} (H_{Tmin}) is the enthalpy of products stable at T_{min}. For example, Fe₂SiO₄ (fayalite_olivine) and SiO₂ are stable at 0% MgO and 30% SiO₂ instead of FeO and SiO₂.

MgO - FeO - SiO₂

If we heat the mixture of (Monoxide + olivine) at 30 wt % the at olivine) J/g, 1500 + mixture becomes mixture of (liquid slag }q SiO2 from 25 °C % 30 wt about 1425 °C and MgO

If we increase the temperature of the mixture of (Monoxide + olivine) at 20 wt % MgO and 30 wt % SiO2 from 25 °C to 1625 °C, liquid slag is forming and the amount of heat required for this is about 2250 J/g.

Ferrous Processing 140

MgO - FeO - SiO₂

 $SiO_{2}/(MgO+FeO+SiO_{2}) (g/g) = 0.4, 1 atm$

 $MgO/(MgO+FeO+SiO_2) (g/g)$

Ferrous Processing 141

Application: Addition of new compound and solution (user defined) in calculations

MnCr2O4-MnAl2O4 ideal solid solution

- New stainless steel production: high Mn stainless steel 400 grade. High MnO formation in AOD / VOD refining process
- MnCr2O4-MnAl2O4 inclusion formation in Mn and Cr containing steels

Fig. 1. Computed phase diagram of the CaO-SiO₂-CrO_x-5 mass.%MgO-10 mass.%MnO system at 1973 K under the oxygen partial pressure, $pO_2 = 10^{-11}$ atm.

Creating user compound database: MnCr2O4 from MnO and Cr2O3

🕼 FactSage 7.3: Compound	(2) Select "mixer"		×
File Edit Units View Tool	s ViewData Help		
Formula MnCr2O4			
(1) Ty	pe the compounds		
	Nickname (4 chars)		
	(3): add the Mn Reactants +1 MnO +1 Cr2O3	I <mark>O and Cr2O3 from known datak</mark> Phase Database S1 FToxid S1 FToxid	base
r □ FIsaltBASE // _w ← INHOBASE 	+/- Product MnCr2O4	State	
FactSage 7.3 C:\FAC	TSA (4): select your	own database (INHOBASE) an	d copy the resu

User Compound Database

🕼 Energy: Joules Pressure: atm MnCr2O4 —	×
File Edit Units View Tools ViewData Help	
Formula MnCr2O4	
Image: state of the stat	$= C_0(M_{PO}) + C_0(C_{PO}) + A H f = T A S f$
$G^{*}(CUDIC-IVIIICI_{2}O_{4})$	$-0^{-}(10110) + 0^{-}(101_{2}0_{3}) + \Delta \Pi^{-} - 1\Delta S^{-}$
$\Delta H^{f} = -51 \text{ kJ/mol, } \Delta H^{f} = -51 kJ$	S = 0 J/mol-K
Cp 298	Interpretation of the second seco
	File Edit Units View Tools ViewData Help
Cp 2000	Formula MnCr2O4
	r □ FTOxCNBASE □ r □ FToxidBASE □ r □ FToxid
	in
	-r 🗅 FTpulpBASE
	in r □ FisaitBASE
	🗄 🔶 MnCr2O4
	Cp 2115
	- r 🗅 SGnoblBASE
	FactSage 7.3 Modified C/EACTSAGE72/EACTDATA/Used/INHO CDB (v5.0) 1 compounds read/write

User Compound Database

FactSage 7.3: Compound	wData Heln		□ ×				
Form Add MgCr2O4 to INHOBAS	E I			<u>Crea</u>	ntin	g user compound databas	<u>se:</u>
Remove from list	B	345F		MaC	r20	O4 from Hana, Sana and Cp	
Clear list of compounds	ľ		_	<u></u>		<u>298</u> <u>298</u> <u>298</u>	
Erase	Input units	>					
Save							
Е Сору	Copy Select input units for the compound						
Paste	Energy	Total pressure					
r 🛱 FTpulpBASE Desi	C calories	• 1 atmost		$(M \sim C \sim O)^{\frac{1}{2}}$			
r 🛱 FTsaltBASE	G Joules	C 1 bar HO	G = G	$(MgCr_2O_4)^{-1}$:		
	1º Obaics		8.15 = 1	-1/0990/./0	0		
S1		5 ₂₉	$_{3.15} = 1$	18.300		1.757(100) T = $2.1247.0$ T = 0.5	
			= 221.2	24-0.001020)1-	$1./5/(10^{\circ})I^{-1} = -124/.9I^{-0.0}$	
Ср 2500		(15	$\mathbf{K} < T$	<3000 K)		—	×
ср 3000			File	Edit Units View	Tools	ViewData Help	
				Formula MgCr2O4			
C SGsoldBASE					F A		
FactSage 7.3 C:\FACTSAGE72\FACTDATA\User\INHO.CDB (v5.0) 1 compounds read/write				r 🗅 FToxidBASE	-	AH 298: 0 J/mol	
3				🖻 🌰 Cr2O3		Cp 5290.03/(mork) from 298.150 K to 6000.000 K	
						H Cp(T) = 221.24 T ⁽⁰⁾	
				⊡ 🋖 MnO		S -0.00102 T^ 1.00	
				⊡		G Edit -1757000 T^-2.00	
						T^ 2.00	
				r 🗅 FTsaltBASE		-1247 9 T^-0.50	
			ļ	/w 🛍 INHOBASE			
				B MgCr2O4			
				ср 6000			
Add $\Delta \Pi 298$, S298 and Cp, respectively \rightarrow				🖻 🛖 MnCr2O4			
				i⊴ ∠ S1			
				—Ср 298 —Ср 2115			
				- Cp 2500			
				Ср 3000	~		
		Fact	Sage 7.3	C:\FACT	ISAGE72\FACTDATA\User\INHO.CDB (v5.0) 2 compounds read/write	1	

Ideal Solution between compounds

🗘 Selection - Phase Diagram - no results - 📃	X
File Edit Show Sort	
Calacted: 9//121 COUD Durington calacted V denotes precise avoluted by default	
- no resulto -	
+ Lode Species Data Phase I V Activity Minimum Maximum	\downarrow MpCr2O4 MaCr2O4 ideal apl'p: (Ma Mp)Cr2O4
+ 150 (Ca2ci sjci 10020(s) FT oxid solid 0	
+ 152 Ca3C/2Si3D12(s) FToxid Uvarovite V	
+ 153 MnD(s) FToxid solid V	
+ 154 MnO2(s) FToxid Pyrolusite V	Noth Macrood and Macrood are calested as
+ 155 Mn203(s) FToxid Bixbvite-LT(orthc V	\rightarrow Both MINUT204 and MIGUT204 are selected as
+ 156 Mn2O3(s2) FToxid Bixbyite-HT(cubi o	ideal adjution #1 with 0 activity apofficiants
+ 157 Mg6Mn08(s) FToxid solid V	I deal solution #1 with 0 activity coefficients
+ 158 MnSiO3(s) FT oxid Rhodonite V	
+ 159 Mn2SiO4(s) FToxid Tephroite V	
+ 160 CaMn03(s) FToxid solid V	
+ 161 Ca2MnO4(s) FToxid solid V	
+ 162 CaMn2D4(s) FToxid solid o	
+ 163 Ca3Mn207(s) FToxid solid V	
+ 164 CaMn3D6(s) FToxid solid o	
+ 165 Ca2Mn308(s) FToxid solid V	
+ 166 Ca4Mn3010(s) FToxid Ca4Mn3010 V	
+ 167 CaMn408(s) FToxid solid o	Variables: 02-CaO-SiO2-Cr2O3-MnO-MgO composition #1. vs composition #1. X
+ 168 CaMn7U12[s] Floxid solid o	Variables T and P
+ 155 AT MgL(2U4(s) INHU 51 0	Pressure or Volume
	Constant V (* Pfatm) constant V
permit selection of X" species Help Suppress Duplicates Edit priority list :	
Show Selected Select All Select/Clear Clear OK	
	XY stens 11 Next >>
	- Chemical Potentials
	#1 loo10(p/atm) constant V
	Cap U CaO + 0 SiO2 + 0 Cr2O3 + 1 MnO + 0 MgO Constant
	U2
	gas+actrS ▼ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	Cancel

Application: Addition of new component in slag

V2O3 into molten slag for V distribution calculations (Henrian Solution)

			存 Equilib - Results 1600 C			· · · · · · · · · · · · · · · · · · ·	_ 0	×
存 Equilib - Menu: last system			Output Edit Show Pages Final Conditi	ons				
File Units Parameters Help				T(C) P(atm) Energy(J)	Quantity(g) Vol(litre)		111 🖳 🕒	1
D 🖻 🔒	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	11 🖳 🕞						
Reactants (6)							FactSage 8	0 0
(gram) 0.5 CaO	+ 0.3 SiO2 + 0.19 Al2O3 + 0.01 V2O3 + 0.	15 Fe + 0.05 Al	(gram) 0.5 CaO + 0.3 SiO2 + (gram) 0.95 Fe + 0.05 Al =	0.19 A12O3 + 0	.01 V2O3 +		-	
Compound species gas ideal C real 0 aqueous 0 pure liquids 0 + pure solids 48 Species: 48 Target - none - Estimate T(K): 1000 Quantity(g): 0 Final Conditions <a> 10 steps Table	Solution phases Full Name + FTmisc-FeLQ Feliq I FToxid-SELAGA A-Slag-liq all oxides + S FToxid-SPINA A-Spinel FToxid-SPINA A-Spinel FToxid-SPINA A-Monoxide FToxid-SPINA A-Wollastonite, FToxid-SPINA A-a(Ca,Sr),Ba)2SiO4 ▼ FToxid-SCSA A-a(Ca,Sr)2SiO4 ▼ Legend I ✓ Show ● all C selected + - selected 1 ✓ Select Solutions: 3 Select Select T(C) P(atm) Product H(J) (D) 1600 1 1 (D)	Custom Solutions O fixed activities Details O ideal solutions Pseudonyms apply Edit Volume data and iquids = 0 include molar volume dats and physical properties da paraequilibrium & Gmin Total Species (max 5000) Total Solutions (max 200) Total Phases (max 1500) Squilibrium normal no time limit Calculate >	1.0070 gram Slag-liq#1 (1.0070 gram, 1.5414E-02 mol + 0 gram, Slag-liq#2 (1600 C, 1 atm, (28.169 wt.% Al + 22.163 wt.% Si + 49.654 wt.% Ca + 1.4222E-02 wt.% Fe + 2.5953E-05 wt.% Fe Site fraction of sub Al Si Ca Fe2+ Fe3+ 	.) a=1.0000) .203 .02 .00 .203) plattice constitue 0.30577 0.20412 0.49000 1.0955E-04 1.7987E-07 1.0000 Amount/mol 1.9966E-06 9.9167E-03	Amount/gram 1.1150E-04 0.35734	Mole fraction 4.6554E-05 0.207293	Mass fract 1.1073E- 0.25407	-04
FactSage 8.0			Si Al O	3.7143E-03 5.5638E-03 2.4693E-02	0.10432 0.15012 0.39507	8.6603E-02 0.12973 0.57573	0.10360 0.14908 0.39234	
V2O3 con → All V go (because	taining slag // Liqui to liquid Fe ?? no V oxide in slag	d Fe-Al ste yet)	+ 0.99304 gram Fe-liq (0.99304 gram, 1.8438E-02 mc (1600 C, 1 atm, (95.654 wt.% Fe + 4.3769E-02 wt.% Al + 5.4492E-07 wt.% Ca + 8.4224E-05 wt.% O + 3.6164 wt.% Si + 0.68441 wt.% V + 2.9669E-04 wt.% Ca + 3.3267E-04 wt.% Al + 3.8423E-05 wt.% VC + 7.2552E-05 wt.% VC + 5.4408E-05 wt.% V2	A) a=1.0000)				
			Final Conditions A> 	T(C)	P(atm)	Product H(J)	1 calculation	× " • • • •
GactSage	TM	Ferro	us Processing 1	50		www.facts	sage.co	m

Ferrous Processing 151

	存 Equilib - Menu: last system							– 🗆 X
	<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp							
			Т	(C) P(atm) Ene	rgy(J)) Quantity(g) Vol(litre)		🚻 📑 🐼
	Reactants (6)							
	(gram) U.5 CaU	+ U	.3 51	02 + 0.19	AI2U	13 + 0.01 V203 +	0.9	15 Fe + U.U5 AI
	- Products							
	Solution FToxid-SLAGA	Soluti	on pł	lases			_	Custom Solutions
	- clear	-	+	Base-Phas	e	Full Name		0 fixed activities
~	- all end-members		+	FTmisc-FeL	Q	Fe-liq		
	* - custom select end-members	#1	1	FT oxid-SLAU	iA	A-Slag-liq all oxides + S		Pseudonyms Edit
	m - merge dilute solution from	D	ilute	Solution #1 - lo	deal-1	1 pinel	-	
	- solution properties	-				inoxide	-	volume data
	+ - single phase	R	Remove dilute components pyroxene		solids and liquids = 0			
~	I - nossible 2-nhase immiscibility			ET ovid-bC29	2	Δ-allCa Sr Bal2SiO4	-	Include molar volume data and physical properties data
•	possible 2 phase immiscibility ossible 3-phase immiscibility			FT oxid-aC29	Ă	A-a-(Ca.Sr)2SiO4	_	
	y possible o prase inimiseionity	Lone	nd —				_	Jparaequilibrium & Gmindit
~	- standard stable phase	l - im	miscit	ble 1	\mathbf{N}	Show 💿 all 🛛 Selected	d	Tabal Canadian (man 5000) 100
	! - dormant (metastable) phase	+ - se	electe	d 1		species: 22	-	
	F - formation target phase				:	solutions: 3 Select	t	Total Solutions (max 200) 4
	P - precipitate target phase							Total Phases (max 1500) 84
	C - composition target						I – F	auilibrium
	L - cooLing calculation		T(C)	P(atm)		▼ Product H(J) ▼		normal C normal + transitions
		600		1				transitions only C open
	Help					1 calculation		- no time limit - Calculate >>
		- 16	ecom	mend you not se	elect	both pure liquids and molt	en so	olutions -
	FactSage 8.0							

GactSage™

Ferrous Processing 153

Vanadium Partition Coefficient In Steel/Slag Melts based on literature data (BOF condition)

FINAL REPORT for MIME572

By Jonathan Spring Undergraduate student McGill University

More details can be found in: http://in-ho-group.snu.ac.kr/?page_id=398

Background

- Partition coefficients used to purify/quantity solute concentration in steel/slag
- Partition coefficient, L_v , = (wt% V) / [wt% V]
- No known expression to predict vanadium distribution coefficient

Henry's Law

- We are dealing with dilute solutions
 - (V₂O₃) ~ 3 wt%
- $2 \underline{V} + 3 \underline{O} = V_2 O_3$
- $K_{eq} = A_{V2O3} / (A_{V}^{2*}A_{O}^{3})$
- Activity = $\Upsilon_{V2O3} X_{V2O3}$
- $\log_{10}(\Upsilon_{V2O3}) = A/T + B$

Literature Search

- Found ~ 20 articles with data on vanadium partition coefficients in slag/steel melts
- 3 of those contained tables of raw data with slag compositions (Zhang, Shin and Inoue) and 2 were performed at similar temperatures (Shin and Inoue). These 2 were used initially.
- Shin's article dealt with slag containing Al2O3. His experiments were
 performed without proper control of the oxygen partial pressure and the
 partition coefficients for V he found were drastically different than in Inoue's
 article. His results are therefore unreliable. Furthermore, the initial V
 partition coefficient model had trouble fitting Shin's data. It was decided
 after my presentation to redo the model using only Inoue's data.
- Total data points: 63

V distribution coefficient between steel and slag

- 1550 °C: 15 data points
- 1600 °C: 28 data points
- 1650 °C: 18 data points
- Slag
 - $x SiO_2$
 - x CaO
 - x FeO
 - $x Fe_2O_3$ - x MgO
- L_v for each data point

			Slag	(wt%)			
T (C)	(CaO)	(SiO2)	(FeO)	(Fe2O3)	(MgO)	(V)	Lv
1650	27	28	21	2	19	1	410.1
1650	19	22	36	4	16	1	751.4
1650	29	15	36	6	10	1	1087.6
1650	8	13	52	4	22	1	850.6
1650	25	7	47	11	8	2	1510.0
1650	17	3	58	12	7	2	1439.3
1650	1	4	71	6	16	1	1142.9
1650	1	15	50	3	29	1	705.9
1650	19	28	29	2	20	1	522.1
1650	28	22	30	4	13	1	761.7
1650	37	14	31	8	8	2	1174.2
1650	21	13	46	6	11	2	937.9
1650	31	7	40	13	7	2	1495.1
1650	0	1	82	6	8	2	1006.2
1650	1	7	71	5	14	1	900.7

Data from Inoue's Article

The amount of V in the slag was not considered. The same fixed amount of V was used for all equilibrium calculations and the subsequent calculation of Lv.

Ref: R. Inoue and H. Suito, Trans. ISIJ, vol. 22, p 705 (1982).

V distribution coefficient between steel and slag

- Databases: FToxid, Ftmisc (FeLQ), FactPS
- Equilibrium
- $x SiO_2$ – x CaO - x FeO 100 g_ $-x Fe_2O_3$ - x MgO – 300 g Fe -2gV

3:1 metal to slag ratio

jactSage[™]

🝞 Eq	juilib - Rea	octants							_		×
File	Edit Tab	le Units I	Data Search Dat	a Evaluation	Help						
	¥ +		1	(C) P(atm) Ene	ergy(J)Quantity(g) \	/ol(litre)		111	🤋 🕒	₩.
1.	7										
	Q	uantity(g)	Sp	ecies	Phase		T(C)	P(total)**	Stream#	Data	
	37		CaO			$\overline{\nabla}$	l		10		
+	15		SiO2			$\overline{\mathbf{v}}$			1		
+	4		FeO			-			1		
+	22		MgO	— г		-			1		
+	18		AI203	—— í		Ţ			1		
+	300		Fe	—— 'r		Ţ	, 		1		
+							, 		1		
	12		JV			<u> </u>	1		11		
								_	La Stat Carried	·.·	
								1	initial Cond	luons	
					Neutas						

• Assume V in slag exists as V_2O_3

🝞 Equilib - Menu: last system		– 🗆 X								
ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp										
nieipi	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	III 💷 🦱 😿	A Selection	- Equilib - no res	ults -					— 🗆
			File Edit	Show Sort						
Reactants (7)						_				
			Selected: 105.	186 SOLID	Duplicates	selected.	< denotes	species exclude	d by default	
(gram) 37 CaO	+ 15 SiO2 + 4 FeO + 22 MgO + 18 Al2O3 +	300 Fe + 2 V					 no results 	·		
			+ Code	Species	Data	Phase	TV	Activity	Minimum	Maximum
Products			X 115	Ca2Al2Si07(s)	FactPS	Gehlenite	V			
- Compound opposion	- Solution phases	- Custom Solutions	× 116	Ca3Al2Si3O12(s)	FactPS	Grossularite	V			
compound species	Solution phases	Details	+ 117	V(s)	FactPS	solid	V			
	* + Base-Phase Full Name ▲	U fixed activities			actPS	solid	V			
🔄 gas 💿 ideal 🔿 real 🛛 0	+ FTmisc-FeLQ Fe-liq	I ideal solutions	- 119 #	V2U3(s)	actPS	Solid_II	V			
aqueous 0	#1 I FT oxid-SLAGA	Pseudonyms	+ 120	V204(s)	FactPS	Solid_I	- V			
pure liguids 0	E loxid-SPINA A-Spinel	apply 🗖 🛛 Edit	+ 121	V2U4(s2)	FactPS	Solid_II	- V			
★ _ nure solids 105	FTovid-MeD A A-Monovide	Volume data	+ 122	V205(s)	FactPS	solid	- V			
	ET avid a DurA A Clinear unano	assume molar volumes of	+ 123	V300(s)	FactFS	solid	0			
* - custom selection		solids and liquids = 0	+ 124	(MaO)0/205(a)	EactPS	solid	0			
species: 105	F I oxid-oPyrA A-Urthopyroxene	👝 include molar volume data	+ 125	(Mg0)(V203)(s) (Mg0)2(V205)(s)	FactPS	solid				
	FT oxid-pPyrA A-Protopyroxene	and physical properties data	+ 120	Si2V(a)	FactPS	Si2V				
	FT oxid-LcPy LowClinopyroxene 💌	Conin Ladit I	+ 128	Si3V5(a)	FactPS	solid				
- Target	legend		+ 129	(CaD)(V2D5)(s)	EactPS	solid	0			
- none -	# - dilute components		+ 130	(CaO)2(V2O5)(s)	FactPS	solid	0			
Estimate T(K): 1000	I - immiscible 1	Total Species (max 5000) 131	+ 131	(Ca0)3(V205)(s)	FactPS	solid	0			
Estimate r (K). Trooo	+ selected 1 species: 26 Select	Total Solutions (max 200) 4	+ 132	Fe(s)	FactPS	bee	V			
Quantity(g): JU	solutions: 3	Total Phases (max 1500) 108	+ 133	Fe(s2)	FactPS	fee	V			
			× 134	FeO(s)	FactPS	Wustite	V			
Final Conditions		auilibrium	× 135	Fe2O3(s)	FactPS	hematite	V			
<a> 	T(C) P(stm) V Product H(J) V	normal O normal + transitions	permit se	lection of 'X' species	Help	Suppress [Duplicates	Edit priority	r list :	
10 steps 🗖 Table	1650 1 1 calculation	ransitions only open no time limit - Calculate >>	Sho	w Selected	Select A		Select/Clea	ar	Clear	ОК

Solid V2O3 was considered because solid V2O3 is stable at these temperatures.

• Change "A" value, "B" assumed to be 0

119 V2O3(s) dissolved in Ideal Solution #1	×						
119 V203(s) - Henrian activity coefficient, gamma log10(gamma) = A/TK + B							
A = 9152							
B = 0							
New mixing particles P = 1 (P > 0)							
#1 Ideal Solution name: Ideal-1 (max 10 chars)							
For ideal behaviour $A = 0$, $B = 0$, $P = 1$.							
Click on [Help] for an explanation of P.							
Click on [Cancel] to remove this species from the ideal solution.							
Cancel Help OK							

			Slag	(wt%)					
T (C)	(CaO)	(SiO2)	(FeO)	(Fe2O3)	(MgO)	(V)	Lv	Α	Ŷ
1650	27	28	21	2	19	1	410.1	-1025	0.29
1650	19	22	36	4	16	1	751.4	-1200	0.24
1650	29	15	36	6	10	1	1087.6	-2175	0.07
1650	8	13	52	4	22	1	850.6	-1100	0.27
1650	25	7	47	11	8	2	1510.0	-2750	0.04
1650	17	3	58	12	7	2	1439.3	-2300	0.06
1650	1	4	71	6	16	1	1142.9	-1300	0.21
1650	1	15	50	3	29	1	705.9	-750	0.41
1650	19	28	29	2	20	1	522.1	-1000	0.30
1650	28	22	30	4	13	1	761.7	-1475	0.17

"A" Value to Activity Coefficient

 $log_{10}(\Upsilon_{V2O3}) = A/T + B$ $log_{10}(\Upsilon_{V2O3}) = -1025/1923$ $\Upsilon_{V2O3} = 10^{(-1025/1923)}$

 $\Upsilon_{V2O3} = 0.293$

A more negative "A" value indicates a smaller activity coefficient.

- The regression using slag basicity, $A = aCaO/SiO_2 + bMgO/SiO_2 + c(FeO + Fe_2O_3)$, was discarded because the fit was not as good as for the regression using each slag component.
- The regression using each slag component was poor nonetheless. Another regression, using all slag components and the slag temperature, was introduced.
- Option #1

 $A = aCaO + bSiO_2 + c(FeO + Fe_2O_3) + dMgO$

- Option #2 (Option #1 including temperature)
 A = aT(K) + bCaO + cSiO₂ + d(FeO + Fe₂O₃) + eMgO
- Option #3 (Option #2 including Constant)
 A = aT(K) + bCaO + cSiO₂ + d(FeO + Fe₂O₃) + eMgO + Constant

- Regression #3 is best
 - Slope of Measured vs Predicted "A" and Measured vs Predicted Lv is closest to 1
 - Smaller residuals
 - Residuals are randomly distributed
- A = 7 * Temperature (K) 51 * wt% CaO + 133 * wt% SiO₂ + 31 * (wt% FeO + wt% Fe₂O₃)
 - 37 * wt% MgO + 10,100
- Need to test against more data!

Zn Galvanizing process

Reduction furnace: selective oxidation Galva-Annealing: Zn melting and oxidation

Ferrous Processing 167

N2-H2 gas with -30C dew point

-		-						Т		
4	Equilib -	Reactants					- 🗆 X			
File	Edit	Table Units D	ata Search Data E	valuation Help						
		+	T(C) P(bar) Energy(J) Q	uantity(g) 1	Vol(litre)	We shoul	d select real ga	is to obtain	
	1 - 3						accurate	Gibbs energy a	ind volume	
								for a set law to a		
		Quantity(g)	Speci	es Pi	nase	T(C) P(total)**	traction o	r gas at low ten	nperature	
	95		N2				and high	pressure	-	
	+ =					存 Equilib - Menu: com	ana mgn			×
	5		H2			File Units Parameters	Help			
	+ 1		H20			🗅 🖻 🛃	T(C) P(bar) Energy(J) Quantity(g) Vol(litre) 👖 🗾	P 🕅
						Reactants (3)				
								(gram) 95 N2 + 5 H2 + H2O		
						- Products				
						Compound species	Solution phas	ses	Custom Solutions	
								Base-Phase Full Name	0 fixed activities	calls
						aqueous				
						+ pure liquids	8		apply 🗖 🔄 Edi	t
						+ pure solids	8		Volume data	es of
									solids and liquids = 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14						species:	45		and physical propertie	es data
				Next	`				🗖 paraequilibrium & Gmir	n edit l
_						Target	Legend	Show 🛈 all - Cisel	ected Virtual species:	
Facts	6age 8.0	Compound:	1/27 databases	Solution: 0/26 a	latabases	Estimate T(K): 1000			Total Species (max 5000)	45
						Quantity(a): 0		solutions: 0 S	elect Total Solutions (max 200)	0
									lotal Phases [max 1500]	17
						Final Conditions	D		Equilibrium	
						<a>	 [[C]	P(bar) Product H(J)	O normal O normal + tra	ansitions
							-30	1	C transitions only C op)en
							Die	1 calcula	- no time limit - Calcula	ite >>
						FactSage 8.0	C:\FactSage Workshop	DAT\7_Zn_Galvanizing_process.equi		

N2-H2 gas with -30C dew point

Mixtures - Results -30 C		- 🗆 ×
Output Edit Show Pages Final Cond	litions	
	T(C) P(bar) Energy(J) Quantity(g) Vol(litre)	🚻 💷 🦱 👿
		▲
		FactSage 8.0
T = -30.00 C		
P = 1 bar		
V = 82.660 dm3		
STREAM CONSTITUENTS	AMOUNT / gram	We will heat this gas at 800°C using
N2	9.5000E+01	
H2	5.0000E+00	stream file.
H2O	1.0000E+00	
		/
	EQUIL AMOUNT MOLE FRACTION FUGACITY	Y
PHASE: gas_real	mol bar	
N2 V	2.5651E+00 6.2423E-01 6.2457E-0	01
NH3 V	1.5419E+00 3.7522E-01 3.6993E-0	01
H2 V	1.9275E-03 4.6908E-04 4.7153E-0	04
H2O V	3.1735E-04 7.7229E-05 7.4573E-0	05
N2H4 V	1.1022E-38 2.6822E-39 2.6557E-	39
N2H5OH V	8.5004E-39 2.0686E-39 2.0481E-3	39
	5.1408E-46 1.2510E-46 1.2386E-	46
NH2 V	4.191/E-46 1.0201E-46 1.0100E-	46
	9 CONTRIEN 2 25507-50 2 22257-	55
NO	2 2027E-60 E 2627E-70 E 2575E-	70
N2O V	3 0469E-72 7 4148E-73 7 3453E-	73
TOTAL:	4.1092E+00 1.0000E+00 1.0000E+	00
System component	Amount/mol Amount/gram Mole fract:	ion Mass fraction
0	3.1735E-04 5.0774E-03 2.8078E-0	05 5.1744E-05
N	6.6721 93.454 0.59032	0.95239
H Final Conditions		
<a>	 T(C) P(bar) Pro	oduct H(J) 1 calculation ×
(NH4)20_liq	20 1	
NH4OH_liqui	-30	Calculate >>
NH4OH solid		

N2-H2 gas with -30C dew point

Save or Print As T(C) P(bar) Energy(J) Quantity(g) Vol(litre) Repeat Save T(C) P(bar) Energy(J) Quantity(g) Vol(litre) Plot FactSage 8.0 Stream File Recycle all streams Format Save stream file Save gas phase Fact-XML Summary of streams Save gas phase Fact-Optimal Summary of streams Save gas phase Fact-Function-Builder EQUIL ANOUNT MOLE FRACTION FUGACITY Save aqueous Refresh Summary of streams Joirectory (C:\FactSage Workshop DAT)) Save solutions Swap loops V 2.56612+00 6.24232-01 6.24572-01 Save solutions With V 1.54132F.00 3.7522F-01 3.6982-01 4.71532F-04 7.4573E-05 Swap loops V 3.1035E-04 7.225E-05 Save File C:\FactSage Workshop DAT\gas-30C.mixt H20 V 3.1035E-01 1.0201E-46 1.2510E-46 N214 V 3.0135E-01 1.0201E-46 1.2510E-46 N21 V 3.0237E-57 5.3627E-77 Save File C:\FactSage Workshop DAT\gas-30C.mixt System component	Equilib - Results Creatin	ng stream file		- 🗆 ×
Plot > Equilib Results file > Stream File > Format > Save stream file > >	Save or Print As Repeat Save	T(C) P(bar) Energy(J)	Quantity(g) Vol(litre)	111 💷 🚍 😿
Stream File Recycle all streams Format Save stream file Save gas phase Fact-XIML Stream file properties Save gas phase Fact-Optimal Stream file properties Save aqueous Fact-Optimal Summary of streams Save aqueous Fact-Function-Builder EQUIL AMOUNT MOLE FRACTION mol FUGACITY Refresh Swap loops V 2.5651E+00 6.2423E-01 6.2457E-01 Swap loops V 1.5419E+00 3.7522E-01 3.6993E-01 Save solutions N2H4 V 1.022E-38 2.6622E-39 Save File C:\FactSage Workshop DAT\gas-30C.mixt H V 5.1408E-46 1.2510E-46 Save File C:\FactSage Workshop DAT\gas-30C.mixt NH2 V 4.1917E-46 1.201E-46 Saving file gas-30C.mixt NH2 V 3.0469E-72 7.4148E-73 NO V 2.2037E-69 5.3627E-70 Saving file gas-30C.mixt System component Amount/mol Amount/gram Gas/30C N Final Conditions Gas/30C Calculate >> V <t< td=""><td>Plot > Equilib Results file ></td><td></td><td></td><td>FactSage 8.0</td></t<>	Plot > Equilib Results file >			FactSage 8.0
Fact-XML Stream file properties Save pure liquids Fact-Optimal Summary of streams Save aqueous Fact-Optimal Directory (C:\FactSage Workshop DAT\) Save aqueous Fact-Function-Builder EQUIL AHOUNT MOLE FRACTION FUGACITY Save solutions Refresh V 2.5651E+00 6.2423E-01 6.2457E-01 Swap loops V 1.5419E+00 3.7522E-01 3.6993E-01 H20 V 3.1735E-04 7.7229E-05 7.4573E-05 N2H4 V 1.1022E-38 2.6822E-39 Save File C:\FactSage Workshop DAT\gas-30C.mixt H V 5.1408E-46 1.2510E-46 Saving file gas-30C.mixt H V 9.6807E-60 2.3558E-60 Saving file gas-30C.mixt NH4 V 9.20037E-69 5.3627E-70 Saving file gas-30C.mixt System component Amount/mol Amount/gram Gas\30C N 6.6721 93.454 1.calculation X H V 1.0302E+00 1.0000E+00 N Amount/mol Amount/gram Gas\30C N 6.6721 </td <td>Stream File ></td> <td>Recycle all streams Save stream file</td> <td></td> <td>Save gas phase</td>	Stream File >	Recycle all streams Save stream file		Save gas phase
Fact-Optimal Summary of streams Save aqueous Fact-Function-Builder Directory (C:\FactSage Workshop DAT\) Save aqueous Refresh V 2.5651E+00 6.2423E-01 6.2457E-01 Swap loops V 2.5651E+00 6.2423E-01 6.2457E-01 Swap loops V 2.5651E+00 3.7522E-01 3.6938E-01 N2H4 V 1.022E-38 2.6822E-39 7.4573E-05 N2H4 V 1.1022E-38 2.6822E-39 Save File C:\FactSage Workshop DAT\gas-30C.mixt N2H4 V 1.1022E-46 1.2510E-46 1.2510E-46 NH2 V 1.917E-46 1.0201E-46 Saving file gas-30C.mixt Saving file gas-30C.mixt Saving file gas-30C.mixt Saving file gas-30C.mixt NH2 V 2.0469E-72 7.4148E-73 OH V 2.037E-69 5.3627E-70 N2O V 3.0469E-72 7.4148E-73 OTAL: 4.1092E+00 1.0000E+00 Amount/mol A 1.032E-04 5.0774Z-03 Gas\30C N 6.6721 93.454 <	Fact-XML >	Stream file properties		Save pure liquids
Fact-Function-Builder EQUIL AMOUNT MOLE FRACTION FUGACITY Save solutions Refresh V 2.5651E+00 6.2423E-01 6.2457E-01 3.6993E-01 Swap loops V 1.5419E+00 3.7522E-01 3.6993E-01 4.7153E-04 H20 V 1.9275E-03 4.6908E-04 4.7153E-04 7.4573E-05 N2H4 V 1.1022E-38 2.6822E-39 Save File C:\FactSage Workshop DAT\gas-30C.mixt H V 5.1408E-46 1.2510E-46 Saving file gas-30C.mixt HNH2 V 4.1917E-46 1.0201E-46 HNH4 V 7.8817E-55 1.9180E-55 OH V 9.6807E-60 2.3558E-60 NO V 2.0037E-69 5.3627E-70 N20 V 3.0469E-72 7.4148E-73 O 3.1735E-04 5.0774E-03 Gas{30C N 6.6721 93.454 Gas{30C NH40P_11quid -30 1 Calculate >>	Fact-Optimal >	Summary of streams Directory (C:\FactSage W	orkshop DAT\)	Save pure solids
V 2.5651E+00 6.2423E-01 6.2457E-01 Swap loops V 1.5419E+00 3.7522E-01 3.6993E-01 V 1.9275E-03 4.6908E-04 4.7153E-04 N2H4 V 1.1022E-38 2.6822E-39 7.4573E-05 N2H4 V 5.1408E-46 1.2510E-46 Save File C:\FactSage Workshop DAT\gas-30C.mixt NH2 V 4.1917E-46 1.0201E-46 Saving file gas-30C.mixt NNH V 7.8817E-55 1.9180E-55 Comments NO V 2.2037E-69 5.3627E-70 Gas\30C N20 V 3.0469E-72 7.4148E-73 Gas\30C N20 V 3.0469E-72 7.4148E-73 Gas\30C N 6.6721 93.454 Gas\30C H V 6.6721 93.454 Gas\30C NH40E 1.11guid '30 1 Calculate >> V	Fact-Function-Builder	EQUIL AMOUNT MOLE F	RACTION FUGACITY bar	Save solutions >
11.22/32/32 11.02026/33 11.02026/33 11.02026/34 11.02016/46	Swap loops	V 2.5651E+00 6.24 V 1.5419E+00 3.75 V 1.9275E-02 4.69	23E-01 6.2457E-0 22E-01 3.6993E-0 09E-04 4.7152E-0	1
N2H5OH V 8.5004E-39 2.0686E-39 Save File C:\FactSage Workshop DAT\gas-30C.mixt H V 5.1408E-46 1.2510E-46 Saving file gas-30C.mixt NH2 V 4.1917E-46 1.0201E-46 Saving file gas-30C.mixt HNNH V 7.8817E-55 1.9180E-55 Calculate OH V 9.6807E-60 2.3558E-60 Calculate >> N2O V 3.0469E-72 7.4148E-73 Calculate >> System component Amount/mol Amount/gram Gas}30C Gas N 6.6721 93.454 Calculate >> Y H Calculate >> -30 1 Calculate >> Y	H2O N2H4	V 3.1735E-04 7.72 V 1.1022E-38 2.68	29E-05 7.4573E-0 22E-39	5
HNNH V 7.8817E-55 1.9180E-55 OH V 9.6807E-60 2.3558E-60 NO V 2.2037E-69 5.3627E-70 N2O V 3.0469E-72 7.4148E-73 TOTAL: 4.1092E+00 1.0000E+00 System component Amount/mol Amount/gram O 3.1735E-04 5.0774E-03 N 6.6721 93.454 H Final Conditions (NH4) 20_liqi NH4OH_liqui	N2H5OH H NH2	V 8.5004E-39 2.06 V 5.1408E-46 1.25 V 4.1917E-46 1.02	36E-39 Save File C:\Fac 10E-46 01E-46 Source file good	20C mixt
NO V 2.2037E-69 5.3627E-70 N2O V 3.0469E-72 7.4148E-73 TOTAL: 4.1092E+00 1.0000E+00 System component Amount/mol Amount/gram O 3.1735E-04 5.0774E-03 N 6.6721 93.454 H Final Conditions (NH4) 20_liqui NH40H_liqui -30 1	HNNH OH	V 7.8817E-55 1.91 V 9.6807E-60 2.35	.80E-55 58E-60 Enter one line of	of comments
System component Amount/mol Amount/gram O 3.1735E-04 5.0774E-03 N 6.6721 93.454 H Final Conditions (NH4) 20_liqt NH4OH_liquit W4OH_selidd	N2O TOTAL:	V 3.0469E-72 7.41 4.1092E+00 1.00	.48E-73 000E+00	
H (NH4) 20_liq NH40H_liqui NH40H_liqui	System component O	Amount/mol Amoun 3.1735E-04 5.07	174E-03 Gas 30C	
(NH4) 20_liqt NH40H_liquid WH40H_selidd	H Final Conditions	6.6721 93.4 s	.54	
	(NH4) 20_liqu NH40H_liquid	 T(C) -30	P(bar) Proc	Calculate >>

N2-H2 gas with -30°C dew point \rightarrow 800°C

存 Equilib - Menu:		$ \square$ \times
File Units Parameters Help		
D 🚔 🖶	T(C) P(bar) Energy(J) Quantity(g) Vol(litre)	
Reactants (1)		
	(gram) 100% (gao 2001	
	(gran) 100% (gas-300)	
Products		
Compound species	- Solution phases	Custom Solutions
	* + Base-Phase Full Name	0 fixed activities Details
+ gas ideal real 29		
aqueous 0		🗘 Mixtures - Results 800 C — 🗆 🗙
+ pure solids 8		Output Edit Show Pages Final Conditions
		Final partial pressure of oxygen
species: 45		
		EQUIL AMOUNT MOLE FRACTION FUGACITY
Target	Legend	PHASE: gas_ideal mol bar
- none -	- I✓ Show (● all (○ sele	H2 3.33582+00 5.90342-01 5.90342-01 H2 2.31412+00 4.09532-01 4.09532-01
Estimate T(K): 1000	species: 0 Se	NH3 4.2239E-04 7.4750E-05 7.4750E-05
Quantity(g): J0	solutions: U	H20 3.1735E-04 5.6162E-05 5.6162E-05 H 5.0862E-08 9.0010E-09 9.0010E-09
		NH2 1.2010E-11 2.1254E-12 2.1254E-12
	T(C) P(bar) - Product H(U)	HNNH 8.8329E-17 1.5632E-17 1.5632E-17
		NO 7.2047E-17 1.2750E-17 1.2750E-17
		N2H4 2.1778E-17 3.8540E-18 3.8540E-18 NHH 1 4548E-17 2.5746E-18 2.5746E-18
10 steps 1 lable		N 6.3961E-20 1.1319E-20
		HNO 1.3579E-20 2.4030E-21 2.4030E-2
FactSage 9.0		0 4.0409E-21 7.1512E-22 7.1512E-22 0 6.4478E-22 1.1411E-22 1.1411E-22
TactSage 0.0		N3 1.3642E-23 2.4142E-24 2.4142E-24
		HOOH 1.8966E-25 3.3565E-26 -8.0065E-20
		02 4.7088E-26 8.3331E-27 8.3331E-27
		HOO 1.0721E-28 1.8973E-29 1.8973E-29
		HONO(g2) 8.7194E-29 1.5431E-29 1.5431E-29
		HONO(g) 6.7653E-29 1.1972E-29 1.1972E-29
		HO2 4.6730E-31 0.2712E-32 0.2712E-32 HONO2 1.1815E-43 2.0908E-44 2.0908E-44
		03 1.2124E-49 2.1455E-50 2.1455E-50
		NO3 1.3873E-50 2.4551E-51 2.4551E-51
		N203 2.65852-53 4.70482-54 4.70482-54
		TOTAL: (A> (B> T(C) P(bar) Product H(J) 1 calculation X
		System co
		N Calculate //
	l	

Dew points – PO₂/T Relationship

Ferrous Processing 172

Phase diagram PO₂ – T: Oxidation of Fe-1%Mn-1%Si

Databases - 3/27 compound databases. Phose Diagram - Menu: last system Products File Units Parameters Variables Help PTInic Components (4) Components (4) Poducts Poducts gas @ ideal C real 0 gas @ ideal C real 0 pue liquids = 0 0 paraequilibrium & Remin columes of solids and physical properties data paraequilibrium & Grain edd + Fostel-RDC CBECA2, 2 options - search for	存 Data Search									×	
Private Defended Protecting Components Value fast system File Options File Components Cancel Products Components Solution phases Custom Solutions Decision Products Components Solution phases Custom Solutions Decision Products Compound species Solution phases File Custom Solutions Decision Options - search for product species Custom selection Solution phases File Custom solutions Custom Solutions Decision Default Innor Include cool Taget Legend Solution phases Pase Phase File Custom Solutions Decision Cancel Value faultids 0 Include cool Include cool Solution phases Pase Phase File Nume chai Pase Cool Solution Decision Solution phases Pase Cool Custom Solutions Decision Pase Cool Solution Pase Cool Custom Solutions Decision Custom Solutions Decision Custom Solutions Decision Custom Solutions Custom Solutions Decision<	– Databases -	3/27 compour	nd data	bases, 2/26 soluti	on databa:	ses –					
 FactPS FScopp Flowid FStead FStead FStead File File	Gact	GactSage"	SG	TE]		Prive	ta l	Natahac		
Froxid FStead FToxid FStead FToxid FStead FToxid FStead FToxid FStead FToxid FStead FTisalt FStead FToxid FStead FToxid FStead FToxid FStead FToxid Components (4) Components (4) (gram) 02 + Fe + Mn + Si FToxid FToxid FToxid FToxid FToxid FToxid FTitz FToxid FToxid FToxid FToxid FToxid Grammation FToxid Information Gages (ideal C real 0) aqueous 0 aqueous 0 i FSstel-BCC Base-Phase Full Name i FSstel-BCC <t< th=""><th>✓ FactPS</th><th></th><th>🗆 в</th><th>存 Phase Diagram</th><th>- Menu: la</th><th>st sys</th><th>tem</th><th></th><th></th><th></th><th>– 🗆 ×</th></t<>	✓ FactPS		🗆 в	存 Phase Diagram	- Menu: la	st sys	tem				– 🗆 ×
□ Fisalt □ Fisalt <t< td=""><td>FToxid</td><td>FSIead</td><td>🗆 S</td><td>File Units Parar</td><td>neters Va</td><td>riable</td><td>s Hel</td><td>р</td><td></td><td></td><td></td></t<>	FToxid	FSIead	🗆 S	File Units Parar	neters Va	riable	s Hel	р			
Components (4) FT hall FT hall FT hall FT hall FT hall FT hall Gram 02 + Fe + Mn + Si FT hall (gram) 02 + Fe + Mn + Si (gram) 02 + Fe + Mn + Si FT hall (gram) 02 + Fe + Mn + Si (gram) 02 + Fe + Mn +	FTsalt	✓ FSstel ✓ FSupsi		🗅 🗃 日	M 📑 🕞 📧						
□ FTfriz □ gram 02 + Fe + Mn + Si □ FTheig □ ELEM □ FThite □ FToducts □ FTite □ FToducts □ formation - □ gas G ideal C real 0 aqueous 0 □ pure liquids 0 + pure solids 51 * custom selection species: 51 Solution phases □ Options - search for product spe □ include mole volumes of species: 51 Solution phases □ fixed activities □ etails 0 fixed ac	FThall		01	Components (4))						
□ FT demo □ □ formation - □ □ gas © ideal C real □ □ gas © ideal C real □ □ gas © ideal C real □ □ pure liquids 0 · + pure solids □ · + pure solids □ · + pure solids □ · + FSstel-CDB CBCC_A12 · - colude molar volumes of solids and liquids = 0 · + FSstel-CDB CUB_A13 · - role demolar volumes of solids and liquids = 0 □ fault □ gaseo □ gaseo □ · none · etails □ Etimate T(K): □000 · - selected 16 □ · - sele									(gram) 02 +	Fe + Mn + Si	
□ FTlite □ Froducts □ Information - □ gas ⓒ ideal C real 0 □ aqueous 0 □ pure liquids 0 ↓ Fsstel-FCC Solution phases □ fixed activities 0 □ data solutions □ pure liquids 51 ↓ · pure solids 51 ↓ · custom selection □ gaseot □ gaseot □ gaseot □ finclude cor □ gaseot □ linclude cor □ gaseot □ finclude cor □ linclude cor □ gaseot □ linclude cor □ linclude cor □ linclude cor □ gaseot □ linclude cor □ linclude cor □ linclude cor □ gaseot □ linclude cor □ linclude cor □ linclude cor □ gaseot □ linclude cor □ gaseot □ linclude cor □ linclude cor □ linclude cor □ linclude cor □ gaseot □ linclude cor □ linclude cor □ linclude cor □ linclude cor □ linclude cor □ linclude cor □ gaseot □ linclude cor □ gaseot □ linclude cor □ linclude molar volumes of species: 136											
Information - Generation - <				Products							
Information - gas € ideal C real 0 aqueous 0 pure liquids 0 + pure solids 51 I FSstel-Liqu LIQUID 0 fixed activities 0 eideal solutions Options - search for product spe Default gaseo aqueou gaseo Default I FSstel-HCP HCP_A3 Volume data and physical properties data Immiscible 5 Default Include cor gaseo Default Include cor gaseo Default Immiscible 5 Default Immiscible 5 Stel-RCC Immiscible 5 Solutions: Immiscible 5 Solutions: Immiscible 1 + selected 16 Immiscible 1 + selected 16 Immiscible 1 Solutions: Include cor gaseo Solutions: Include cor gaseo Immiscible 1 + selected 16 Immiscible 5 Solutions: Immiscible 1 + selected 16 Immiscible 1 + selected 16 Include cor Solutions: Include cor gaseo Solutions: Include cor gaseo Solutions: Include cor gaseo Immiscible 1 + selected 16 Include cor Solutions: Include cor Solutions: Include cor gaseo Solutions: Include cor gaseo Solutions: Include cor gaseo Solutions: Include cor Solutions: Include cor Solutions: Include cor gaseo Solutions: Include cor gaseo Solutions: Include cor Solutions: <	FTlite	FTnucl		Compound specie	es		- Solutio	on phas	es		Custom Solutions
Options - search for product spe [addecous]	– Information						*	+	Base-Phase	Full Name	O fixed activities Details
Options - search for product spe include cor gaseo ininited include cor ininited include cor include cor include cor ininited include cor include cor include cor ininited include cor ininited include cor ininited include cor ininited include cor ininited ininited include cor include cor inited include cor inited include cor inited include cor include cor include cor include cor include cor include cor				gas 💿 idea	i 🔘 real	0		-	FSstel-Liqu		
Options - search for product spe include corgination gaseo include corgination include corgination						0		J	FSStel-FUL ESstel PCC		epolu Edit
Options - search for product spe						51		1	FSSIEFBCC FSSIEFBCC		Volume data
Options - search for product spe * - custom selection species: * + FSstel-CUB CUB_A13 Include cor gaseo Include cor gaseo * + FSstel-M1S1 Me1Si1 Image: Include cor gaseo Image:						"		+	FSstel-CBCC		assume molar volumes of
Options - search for product spe				* - custom selection	on			+	ESstel-CLIB	CUB A13	solids and liquids = 0
Options - search for product spe Include cor Target Legend Include cor Immiscible 5 Immiscible 5 Immiscible 1				sp	oecies:	51		+	FSstel-M3S1	Me3Si1	and physical properties data
Default Include cor gased aqueo limited I arget - none - Estimate T(K): Legend I - immiscible 5 J - 3-immiscible 1 + - selected 16 I Show ● all O selected species: I otal Species (max 5000) 187 I otal Species (max 200) 29 I otal Phases (max 1500) Cancel Variables I (C) log10(p(02)) Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si) Phase Diagram Image: Include cor I (C) I (D)	Options - se	arch for produc	ct spe					+	FSstel-M1S1	Me1Si1	
Default gased aqueo limited - none - Estimate T(K): 1 · immiscible 5 J · 3·immiscible 1 + · selected 16 ✓ Show (• all C) selected species: 136 Select: Iotal Species (max 5000) 187 Iotal Solutions (max 200) 29 Iotal Phases (max 1500) 80 Cancel ✓			ude cor	_ Target		_	- Leger	nd —			
Image: Second action of the second of the	Default		gaseo	- none -			I - imn	niscible	5	Show 🖲 all 🔿 selected	Total Species (may 5000) 187
Cancel Variables Yariables Phase Diagram T(C) log10(p(02)) Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si) Y 500 1000 -40 -20 0.01 (min) 0.01 (min) Y			aqueo	Estimate T(K):	1000		J - 3-ir	mmiscib Iaatad		species: 136	Total Solutions (max 200) 29
Cancel Variables Phase Diagram T(C) log10(p(02)) Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si) 500 1000 -40 -20 0.01 (min) 0.01 (min)			mmeu				+-se	lected	16	solutions: 29	Total Phases (max 1500) 80
Variables Phase Diagram T(C) log10(p(02)) Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si) 500 1000 -40 -20 0.01 (min) 0.01 (min)	Canc	el									
T(C) logT0(p(02)) Mn/(Fe+Mn+5i) Si/(Fe+Mn+5i) Y 500 1000 -40 -20 0.01 (min) 0.01 (min) Y					110(-(0	200	1. J				Phase Diagram
500 1000 -40 -20 0.01 (min) 0.01 (min)					logi u(p(u)2)) 	Mn/(F	e+Mn+	-SIJ SI/(Fe+Mn	1+51)	Y
	500 1000 -40 -20)	0.01 (min) 0.01 (min)			×	
log10 p(02)/atm vs T(C) Calculate >>	log10 p(02)/atm_vs_T(C)										- no time limit - Calculate >>
FactSage 8.0			F	FactSage 8.0							

Primary oxide formation diagram

Drawing of the diagram:

1) Collect all blue/red/green lines at different PO2 and superimpose them in one diagram.

2) The boundary of each color line (different phase) is the phase boundary of the primary oxide phase in the diagram.

Fe-Mn-Si at PO₂=10⁻²⁸atm, T=800°C

存 Phase Diagram - Menu: last syst	em	- 🗆 X		
<u>File Units Parameters Variables</u>	: <u>H</u> elp			
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	M 📑 🛃		
Components (4)	(gram) Fe + Mn + Si + O2			
- Products				
Compound species	Solution phases	Custom Solutions		
	* + Base-Phase Full Name 🔺	0 fixed activitiesDetails		
🔤 gas 💿 ideal 🔿 real 🛛 0	+ FSstel-Liqu LIQUID	0 ideal solutions		
aqueous 0	+ FSstel-FCC FCC_A1	Pseudonyms		
pure liquids 0	+ FSstel-BCC BCC_A2			
* + pure solias 50	+ FSstel-HUP HUP_A3	 volume data assume molar volumes of 		
* - custom selection		solids and liquids = 0	nposition #1. vs composition #1.	×
species: 50	+ ESstel-M3S1 Me3Si1	C include molar volume data	T and P	
	+ FSstel-M1S1 Me1Si1 T			or Volume
- Target		paraequilibrium & Gmin edit	Constant 🔍 🤄 Pfatmi	Constant
- none -	+-selected 22 ✓ Show • all ⊂ selected	Total Species (may 5000) 153		
Estimate T(K): 1000	species: 103	Total Solutions (may 200) 22		1
	solutions: 22	Total Phases (may 1500) 72	C V(litre)	
Variables		Phase Diagram		
T(C) log10(p(O2))	Mn/(Fe+Mn+Si) Si/(Fe+Mn+Si)	¥ l		
800 -28	0 0.03 0 0.03	×	Compositions Quantity(g)	
Ma//EarMarCitus Ci//EarMarCit		Calculate >>		
[MI/(Fe+MI+3)] VS 3/(Fe+MI+3)]			H1 0 Fe + 1 Mn + 0 Si	Y-axis 💌
5 10 70			** •• 1 Fe + 1 Mn + 1 Si	- 0,03 (max)
FactSage 7.3			H1 log10(composition)	0 (min)
			0 Fe + 0 Mn + 1 Si	X-axis 🗨
			#2 Hn + 1 Si	· = 0,03
				0 (min)
			Cancel	OK

Ferrous Processing 177

Primary and Secondary Oxidations

Oxidation phase diagram of the Fe-0.002%C-Mn-Si steel at 800°C

Ferrous Processing 180

Remelting and oxidation of Zn galvanized steel

Interface reaction between liquid Zn and steel

🛊 Data Search	×	
Databases - 1/26 compound databases, 1/26 solution databases FactPS FScopp BINS FToxid FSlead SGFE FTsalt FSlead SGSIC FTmisc FSupsi SGSIC FThall FTOxCN Other	Databases] SGTEa □ SGTEb	FSStel database contains reasonable Zn bath data for Zn- galvanizing (Zn-Al-Fe-Mg-Si).
FTfrtz Add/Nemove Data FThelg ELEM FTpulp FTdemo SpMCBN RefreshDatabases TDmeph	Equilib - Menu: last sy: File Units Parameters	ystem – 🗆 X
FTlite FTnucl TDnucl	Reactants (4)	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
Options - search for product species Include compounds gaseous ions (plasmas) aqueous species imited data compounds (25C) Cancel Summary	Products Compound species gas ⓒ ideal ○ rea aqueous pure liquids ↓ pure solids Species: Target - none - Estimate T(K): 1000 Quantity(g): 0	Solution phases Full Name O 0 1 FSstel-Liqu LIQUID 0 J FSstel-FCC FCC_A1 0 J FSstel-FCC FCC_A1 0 I FSstel-FCC FCC_A2 1 FSstel-FCC BCC_A2 26 I FSstel-HCP HCP_A3 + FSstel-SIGM SIGMA + FSstel-CBCC CBCC_A12 + FSstel-CBC CBCC_A12 + FSstel-CBC CBCC_A12 + FSstel-HIGH HIGH_SIGMA + FSstel-HIGH HIGH_SIGMA + FSstel-HIGH HIGH_SIGMA - immiscible 3 J3-immiscible 1 +. selected species: 95 solutions: 18 Select
	Final Conditions	< T(C) P(atm) ✓ Product H(J) ✓ 900 1 ○ normal ○ normal + transitions ble 1 calculation ○ transitions only ○ open • no time limit • Calculate >> ○

Oxidation of liquid Zn

🍞 Data Search				×										
-Databases -	3/26 compour	nd databases,	2/26 solution databas	es Private Databases		(1)-(2) S	Setti	ing oxyge	en p	artial p	ores	sure:	
✓ FactPS ✓ FToxid □ FTsalt	 □ FScopp □ FSlead ☑ FSstel 	BINS SGPS SGTE	compounds only solutions only no database	Equilib - Menu: last system	ו		ctiv	ity c	or log acti	vity	can b	e fi>	(ed	×
FTmisc FThall FTOxCN FTfrtz FThelg FTpulp	 FSupsi ELEM FTdemo 	SGsold	Clear All Add/Remove Data RefreshDatabases	File Units Parameters He	elp	T(C) P(atm) En	ergy(J)	Quantity(g) Vol(litre))		ľ	1 🗩 🕒	X :
FTlite	FTnucl	☐ IDmeph ☐ TDnucl		_		(gram) 1	00% [liq	uidZn-a	fterRxn] + 0 02	2				
				Co <mark>(1) Species (1) Co</mark>	Sc	olution phases-	se-Pha	se Fixe	d Partial Pressure	(2)	- Custom	Solution	10	×
- Options - sea	el	ct species ude compounds gaseous ions (pl aqueous specie: limited data com	asmas) s pounds (25C) Mini Summary	* + gas ideal real aqueous pure liquids * + pure solids * - custom selection species:	1 0 41 42	I F J F I F + F + F + F	Sstel-Liq Sstel-BC Sstel-BC Sstel-BC Sstel-BC Sstel-BC Sstel-BC Sstel-BC	C Enl C (or 2 (ele Pre	ter the value of log1 for a range of value D2(g). ess [Cancel] if the pa	O(p) es enter artial pre	'first last step' ssure is no lo) for nger fixe	Ca ed.	OK ancel
				Target		egend FS		Code	000.5 Species	Data	Phase	T V	Activity	Min
				Estimate T(K): 1000 Quantity(g): 0	[]	- immisciple - 3-immisciple - selected 16	+a	1 2 3 4	0(g) 02(g) 03(g) Cr(g)	FactPS FactPS FactPS FactPS	gas gas gas gas			
				Final Conditions A> B>	90	T(C) 0	ŗ	5 6 7 8	CrO(g) CrO2(g) CrO3(g) Mn(g) Ea(a)	FactPS FactPS FactPS FactPS	gas gas gas gas			
				10 steps Table				3 10 11	FeO(g) FeO(g) Zn(g)	FactPS FactPS	yas gas gas			
				FactSage 8.0										11.

Oxidation of liquid Zn

Image: Participation of the second secon											
Output Edit Show Pages Final Conditions											
D 😂 🕅 🛐 T(C) P(atm) Energy	J) Quantity(g) Vol(litre)	111 🖳 🕒 😿									
a=1.00E-21 a=3.16E-21 a=1.00E-20 a=3.16E-20 a=1.00E	-19 a=3.16E-19 a=1.00E-18										
a=3.16E-26 a=1.00E-25 a=3.16E-25 a=1.00E-24 a=3.16E-2	4 a=1.00E-23 a=3.16E-23 a=1.00E	3-22	la a 10/a ativita (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/						
a=1.00E-30 a=3.16E-30 a=1.00E-29 a=3.16E-29 a=1.00E-28	a=3.16E-28 a=1.00E-27 a=3.16E-2	27 a Axes: gram vs	log lu(activity)	~							
		Y-variable X-varia	ible Swap Axes								
(gram) 100% [liguidZn-afterRxn] + 0 02 =											
		- Y-axis	-X-axis-								
+ 1.4817E-10 02		gram		og10(activity)							
BCC A2#1, selected as a dormant (metastable)	phase, has an activity > 1										
BCC_A2#2, selected as a dormant (metastable)	phase, has an activity > 1	maximum 65	maximu	m 0							
	Plot Species Selection - Equilib Re	esults:									
(900 C, 1 atm, a=1.0000E-30)	File Show Select	minimum U		n <u>-30</u>							
(1.0000E-30 02)	t t Crossics	tick every 5	tick eve	ery 5	in Anti d						
+ 50 439 gram LTOUID#1	- +										
(50.439 gram, 0.78598 mol)	1 02				1						
+ 0 gram LIQUID#2		(
(900 C, 1 atm, a=1.0000) (0.41922 wt & Cr		Cancel	Refresh	OK	2.38						
+ 9.6155 wt.% Fe	4 Mn		JZOUE-03		2.32						
+ 0.68502 wt.% Mn	5 Zn	0 0.3	70502 8.7282E-03	0.998374 5.8436E	-11 0.8S						
+ 2.9376E-10 wt.% O	Liqu# 2	Liquid									
+ 05.200 WC.* 211)	7 Fe		8.3096E-13 1 5868E-03	5.3610E-03 3.7538E 0.991254 4.9244E	-22 2.38 -13 0.60						
System component Amount/mol	8 Mn	0 0	1.7701E-05	5.5252E-03 1.0838E	-15 2.32						
Zn 0.68878	9 Zn	0 0	8.7282E-03	0.998374 5.8436E	-11 0.85						
Mn 6.2892E-03	<u>A1#1</u>	FCC-A1	1 24505 11								
Cr 4.0666E-03	10 Lr 11 Fe-gamma		1.7459E-11 7 1013E-03	3.9393E-02 5.3603E 0.995832 8.0019E	-22 3.4L -13 0.98						
0 9.2611E-12	12 Mn	0 0	1.7046E-05	6.9131E-03 1.4980E	-15 3.21						
+ 0 gram BCC A2#1	13 Zn		4.1512E-03	0.992774 3.0713E	E-11 0.4E ▼						
+ 0 gram BCC_A2#2	Setti	ng X-axis			•						
(900 C, 1 atm, a=1.0000)	-Y: grap	ativitul — Diaslau — - Mar	aa Ordar								
+ 62.617 wt.% Fe	select species - / enter one spe	ecies #	• integer #	Select Top 15 - Os	pecies selected						
+ 0.43760 wt.% Mn	use "+" column		nole C mass (max)	 ignore species and 							
<	Clear		gram C fraction (max) I C activity (max)	phases with zero mass	ок						
				Select							
	Luick on the '+' column to add or remov		ages								

GactSage[™]

Ferrous Processing 185

Oxidation of liquid Zn

Ferrous Processing 186
Carburization and Decarburization of Steel

🗘 Equilib - Reactants		- 🗆 X		
File Edit Table Units Data Search Data Ev	aluation Help			
□ 🛩 🕂 🔟 T(C)	P(atm) Energy(J) Quantity(g) Vol(litre)	<u>III</u> 🖳 🔁		richle
1.6			CO/CO_2 is va	паріе
1				
Quantity(g) Specie	s Phase T(C)	P(total)** Stream# Data		
99.62 Fe	Equilib - M	enu: comments		– 🗆 X
* 0,08	File Units	arameters Help		
* 0,2 Mn		T(C)	P(atm) Energy(J) Quantity(g) Vol(litre)	🚻 📑 🐼
+ 0,1 Si	Reactants (6)		,
+ 1-A> mol CO		(gram) 99.62 Fe + 0.08 C	+ 0.2 Mn + 0.1 Si + <1-A> molC0	+ <a> mol CO2
+ A> mol CO2		(grain) 00.02 10 · 0.00 0		
FactSage 7.3 Compound: 2/24 databases	Next >> Solution: 1/25 databas Final Conditi (A) 01 0.01 10 steps FactSage 7.3	becies Solution phase ideal () real 24 ids 0 ids 0 ds 0 ection 24 (K): 1000 antity(g): 0 (K): 1000 antity(g): 1200 C:\\Equi11_Carburizatio	PS Base-Phase Full Name ▲ FSstel-Liqu LIQUID FSstel-FCC FCC_A1 FSstel-BCC BCC_A2 FSstel-HCP HCP_A3 FSstel-CEME CEMENTITE FSstel-M23C M23C6 FSstel-M23C M23C6 FSstel-M23C M23C6 FSstel-CBCC CBCC_A12 ▼ 2 V Show • all C selected species: 16 solutions: 2 Select P(atm) ▼ Product H(J) ▼ 1 101 calculations (0)	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data • paraequilibrium & Gmin edit <u>Total Species (max 5000)</u> 40 <u>Total Solutions (max 200)</u> 2 <u>Total Phases (max 1500)</u> 3 Equilibrium • normal • normal + transitions transitions only • open Calculate >>

Carburization and Decarburization of Steel

GactSage[™]

Ferrous Processing 188

Carburization and Decarburization of Steel

Ferrous Processing 189

Carburization and Decarburization: Composition target

Ferrous Processing 190

Carburization and Decarburization: Composition target

Ferrous Processing 191

Modified Quasichemical Model: $O^{2-} + O^0 = 2O^{-}$

See the following paper for the calculation of Q species from bond fraction: ERIC THIBODEAU, AIMEN E. GHERIBI, and IN-HO JUNG: METALLURGICAL AND MATERIALS TRANSACTIONS B vol. 47B, 2016, p. 1147

Structure of molten slag

Structure of molten slag

Structure of molten slag

Ferrous Processing 195

Viscosity Calculation: S+L mixtures (Einstein-Roscoe Eq.)

Viscosity of liquid slag can be calculated from "Viscosity" module from slag composition calculated from "Equilib" (Step-2)

Einstein-Roscoe Equation (one of the most well-accepted equation of viscosity for solid+liquid mixture)

Viscosity (solid+liquid mixture) \approx Viscosity (liquid) \cdot (1 – solid fraction)^{-2.5}

Original Einstein-Roscoe equation use 'volume fraction of solid' instead of 'solid fraction' and correction term for morphology, but all these values are not very well-known for general solids, we can simply use the solid fraction (wt fraction) for this equation as approximation.

This value can be calculated using "Equilib" module at given system composition and temperature (Step-1).

Viscosity Calculations "Step-1": Composition of liquid slag

😝 Equilib - Menu: last system	-	- 🗆 🗙]									
File Units Parameters Help												
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)		👖 🞐 🕒 😿										
Reactants (4)												
	_											
(gram) 40 CaU + 10 MgU + 15 Al2U3 + 35 SiU2												_
	Cutrust Edit	Results 1500 C (page 1/1	1)							_		
Products		Show Pages Final Co	naitior	ns TíC	C) P(atm) Energ	ov(J) Qua	ntituía) Volílitre)			11	l 🖬 🦱 📷	1
Lompound species	1500 C 1490	C 1480 C 1470 C 14	160 C	1450 C 14	440 C 1430 (C 1420	C 1410 C 1	400 C]		<u> </u>		1
as C ideal C real D									FactSage	7.3		-
	(gram) 40	0 CaO + 10 MgO +	15 2	A1203 +	35 SiO2	=						
pure liquids 0 I FToxid-MeD A A-Monoxide	100.00	0 gram Slag-li 00 gram 1 6910 mol	q#1									
pure solids 50 I FT oxid-cPyrA A-Clinopyroxene	+ 0 - Spr	eadsheet Setup	.,							×		
+ FToxid-oPyrA A-Orthopyroxene	-9	System Properties										
species: 50 + FToxid-pPyrA A-Protopyroxene				Prop	perty columns	1 🔹						
+ FToxid-LcPy LowClinopyroxene		Column: -1 -	_									
Legend												
Estimate T(K): 1000 +: selected 9	- 5	Species Properties					Species	•	Columns: 9			
Solutions: 19 Select		Columns per species 2	Ξ°	order spec	cies 💽 order	props.	Seler	-	Cancel			
Guannig(g). jo		Column: - ·	1 · //%	-2-	-				Default			
- Final Conditions		T difability		3								
A> T(C) P(atm) ▼ Product H(I) ▼ (•			Spi	readsheet -	Equilib Page	1/11 : T(C)	= 1500, P(atm)) = 1			_	×
		A1-S1-0-0 A1-Ca-0-0	File E	Edit Show								
10 steps Jable		Si-Ca-O-O	Selecte	:d: 4/137	Spreadshee	t Species	00 [min = 1400 a	Longo 11.	may = 1500 at page	Pages: 11 Plater	$\frac{ 1 }{ 1 } = \frac{ 1 }{ 1 }$	[page]
		Ca-Mg-O-O	+	Code	Species	Data	Phase		Activity M	inimum	Maxim	un 🔺
		Total amount/mol		49 Ca3	MgSi208(s)	FToxid	Merwinite	V	0.4383 0.4	383 [1]	0.9184	[11]
FactSage 7.3		System component Ca		50 LaA 51 CaA	AI25106(s) AI25i208(s)	FToxid	La-I schermak Hexagonal	T o 1.	.5329E-02 3.53 .7499E-07 1.74	29E-02 [1] 99E-07 [1]	1 5.55TUE-0] 4.5369E-0	2 [9] 7 [10]
		Si Al		52 CaA	Al2Si2O8(s2)	FToxid	Anorthite	V 1.	.0647E-02 1.06	47E-02 [1]] 1.8093E-0	2 [9]
		Mg		53 Ca2	Al25i3012(s)	FToxid	Grossularite	V 2.	.9049E-04 2.90	049E-04 [1]] 8.3434E-0	4 [10]
	+ 0	gram a-(Ca.S	+	55 Al20	D3(SLAGA)	FToxid	ET oxid-SLAGA‡	t 1.	0579E-02 7.12	59E-03 (11	1.0678E-0	2 [8]
		(1500 C, 1 atm,	+	56 SiO2	2(SLAGA)	FToxid	FToxid-SLAGA#	t 1.	.3952E-02 1.34	22E-02 [8] 1.5124E-02	2[11]
L			++	57 CaU 58 MgC	J(SLAGA) D(SLAGA)	FToxid	FToxid-SLAGA#	5. 3.	.8151E-03 3.20 .6617E-02 3.37	50E-03 (11 '06E-02 (8)	5.8151E-0 3.9552E-0	3[1] 2[11]
				E0 A120		ET avid	ET - GRONA	6	C002E 02 C CC	005 00 141	1 0.1003	101
				60 Al1C	04[1+](SPINA) 04[5-](SPINA)	FToxid	FToxid-SPINA FToxid-SPINA	2.	.4777E-08 1.51	21E-09 [11	[] 2.4777E-C	18 [1]
				61 Mg1 62 Alth	1AI2O4(SPINA) Ma2O4[1-](SPIN4	FToxid	FToxid-SPINA FToxid-SPINA	1	0.2186 0.2 5367E-02 1.53	186 [1] 675-02 [1]	0.3749 1 2.5878E-C	[11]
				63 Mg3	304[2-](SPINA)	FToxid	FToxid-SPINA	3.	.3358E-03 3.33	858E-03 [1]] 5.2168E-0	J3 [9]
				64 Mg1	1U4[6-](SPINA)	FToxid	F I oxid-SPINA	1.	.8434E-11 7.29	/9E-13 [11	J 1.8434E-1	1 [1]
				65 CaO)(MeO_A)	FToxid	FToxid-Me0_At	4.	4352E-02 3.37	39E-02 [11] 4.4352E-0	2[1]
			'+' der	notes all the 9	J(MCU_A) Species Propertia	r Loxid es as defin	r i oxid-MeU_AI	heet Setur	0.3182 0.3	182 [1]	0.4592	
			_ v der		eposios riopetu		contrato opredus					
					Select A	dl		Clear		OK		

GactSage[™]

Ferrous Processing 197

Viscosity Calculations "Step-2": Viscosity of liquid slag

Ty Viscosity of liquid oxid "Melts" database is for liquid slag

File Edit Units Options Help

	Calcula	ate >>	Datab	ase : M	elts	Glasses Incl	ude/Remove Fluoride (Components	Clear ALL	- 07		
Enter the amounts of the constituents in the rows below. Then press on Calculate to show the viscosity.												
•	_	в	<u> </u>		Z A/		A AB		AD			
	SiO2	AI203	CaO	MgO	ZnF2	Temperature	visc[poise]					
1	[g]	[g]	[g]	[g]	[g]	[°C]						
2	35	15	40	10		1500.00	2.571	Melts				
3	35	15	40	10		1490.00	2.725	Melts				
4	35	15	40	10		1480.00	2.890	Melts				
5	35	15	40	10	•	1470.00	3.068	Melts				
6	35	15	40	10		1460.00	3.259	Melts				
7	35	15	40	10		1450.00	3.464	Melts				
8	35	15	40	10		1440.00	3.685	Melts				
9	35	15	40	10		1430.00	3.923	Melts	Taka th	aca raculte		
	32.971	13.594	37.333	9.5973		1420.00	4.122	Melts	Take th			
10	271	775	707	033					for nex	t step		
	26.358	9.9068	29.133	8.1082		1410.00	4.246	Melts				
111												
	269	833	419	062	•							
<u> </u>	269 16.701	833 5.81911	419 17.872	062 5.6774	•	1400.00	4.367	Melts				
12	269 16.701 928	833 5.81911 08	419 17.872 818	062 5.6774 119		1400.00	4.367	Melts				
12 13	269 16.701 928	833 5.81911 08	419 17.872 818	062 5.6774 119	• 	1400.00	4.367	Melts				
12 13 14	269 16.701 928	833 5.81911 08	419 17.872 818	062 5.6774 119	• 	1400.00	4.367	Melts				
12 13 14 15	269 16.701 928	833 5.81911 08	419 17.872 818	062 5.6774 119		1400.00	4.367	Melts				
12 13 14 15 16	269 16.701 928	833 5.81911 08	419 17.872 818 Sitior	062 5.6774 119	, I J auid	1400.00	4.367	Melts				
12 13 14 15 16 17	269 16.701 928	833 5.81911 08	419 17.872 818 sition	062 5.6774 119	, I J quid	1400.00	4.367	Melts				
12 13 14 15 16 17 18	269 16.701 928 Co Sla	833 5.81911 08 0mpo ag fro	419 17.872 818 sition om Ec	062 5.6774 119 n of li quilib	, , quid	1400.00	4.367	Melts				
12 13 14 15 16 17 18 19	269 16.701 928 Co sla	833 5.81911 08 ompo ag fro	419 17.872 818 sition	062 5.6774 119 n of li quilib	quid	1400.00	4.367	Melts				
12 13 14 15 16 17 18 19 20	269 16.701 928 Co sla	833 5.81911 08 ompo	419 17.872 818 sition	062 5.6774 119 n of li quilib	quid	1400.00	4.367	Melts				
12 13 14 15 16 17 18 19 20 21	269 16.701 928 Co sla	833 5.81911 08 ompo	419 17.872 818 sition om Ec	062 5.6774 119 n of li quilib	quid	1400.00	4.367	Melts				

Viscosity Calculations "Step-3": Liquid + Solid mixture

X	🔀 🖳 🔊 🔻 🖓 🖛 🖓 🖛 👘 👘 👘 👘										
F	File Home Insert Page Layout Formulas Data Review View Acrobat 🛆 🕜 🗆 🗗 🔀										
Pa	Calibri ste	• 11 • A A A •	≡ _≡ ≫∗ ≣≣∃⊈≇≇	General ⊡ × \$ × %	, *.0 .00 • 00 ≯.0	Conditi Formatt	ional Format C	Inser Inser Inser Pole Por Form	rt ▼ Σ ▼ ete ▼ ⊮ T nat ▼ ⊘ ▼	Sort & Find Filter + Sele	d & ect ≠
Clip	board 🕞	Font G	Alignment	lis Nur	nber 🕞		Styles	Cells	s	Editing	
	D17 -					_		<u></u>			~
	С	D	E	F	G		н		J	K	
1	Wt%-SiO2(SLAGA#1)	Wt%-CaO(SLAGA#1)	Wt%-MgO(SLAGA#1	g-xid-SLAGA#	amount of s	olids v	is cosity of liquid	olid+liquid			
2	35	40	10	100	0		2.366	2.366			
3	35	40	10	100	0	_	2.503	2.503			
4	35	40	10	100	0	-	2.649	2.649			
5	30	40	10	100	0	-	2.805	2.805			
7	35	40	10	100	0		3 152	3 152			
8	35	40	10	100	0		3.345	3.345			
9	35	40	10	100	0		3.553	3.553			
10	35.264514	39.930352	10.264831	93.496742	6.50325	8	3.744	4.429397		· -	- 1 11
11	35.858294	39.633643	11.030572	73.506394	26.49360)6	3.897	8.412355	Einste	ein-Ro	scoe
12	36.252378	38.793831	12.32313	46.07094	53.9290	6	4.042	28.05619	Eq.		
13									::+		
14			Amou	nt –		_	Stop 2				
15			of slag)		-	Step-2				
16											
10						· ·					
19					Amount	of so	DIIDS				
20					(100-am	ount	of liquid)				
21											
22											
23											
24											
25											
14	Sheet1 Sheet	et2 / Sheet3 / 🞾 /	· · · · · · · · · · · · · · · · · · ·			1					
Rea	ady								🛄 100% 🤆)0	

Ferrous Processing 199

Thanks to FactSage Steelmaking Consortium Members

JFE

Visit In-Ho Jung's research group website http://in-ho-group.snu.ac.kr/

RHI MAGNESITA