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Gibbs energy 

G = H – TS;   G: Gibbs Energy, H: Enthalpy, S: Entropy 

1. For pure elements or pure compounds (Al, O2, Al2O3, etc.) 
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* In FactSage compound databases, 

           ,       ,    ,     are stored 

 Absolute Gibbs Energy of compounds 

relative to elemental species. 
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Gibbs energy 

2. Chemical reaction between pure compounds (No solutions) 

nA + mB = AnBm 
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In many thermodynamics books,         ,        are given. 

These values are not absolute values, but dependent on each chemical 

reaction.  

 In FactSage, therefore, absolute Gibbs energy of each species 

(relative to elemental species) is stored.  Then, the reaction Gibbs 

energy for any reaction can be automatically calculated from the Gibbs 

energy of each species. 
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Gibbs energy 

3. Chemical reaction involving gas 

nA + mO2(g) = AnO2m 

At Equilibrium 
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Gibbs energy 

3. Chemical reaction involving gas (continued) 

In general, for aA + bB(g) = cC + dD(g) 

At equilibrium 
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FactSage Reaction module can give this kind of answer 

quickly. Reaction module is only for stoichiometric species 

(No solutions are involved in the Reaction module 

calculation) 
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Gibbs energy 

4. Chemical reaction involving solid or liquid solutions 
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aRTGG  a: activity 

change of Gibbs energy of i in solution 

by interacting with surrounding species 

Definition of activity 
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∴ aA is the activity of species A in solution: 

higher activity means a higher chance of 

evaporating. 
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Gibbs energy 

Activity 

ii

o

iii
xppa  )/(

0 x i 1 

i
a

(+) deviation 

(-) deviation 

ideal 

1 

4. Chemical reaction involving solid or liquid solutions 

(+) deviation: repulsion between i and other species 

            : more active chemical reaction of i 

 

(-) deviation: attraction between i and other species 

            : less active chemical reaction of i 
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In general, for aA + bB(g) = cC + dD(g) 

At Equilibrium 
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Gibbs energy minimization 

In most thermodynamics texts, one calculates equilibrium conditions 

0
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In real calculations, we want to know the direction of reaction and 

the final products 

mA + nB 

many possible outputs 

A2B 

Inputs (initial condition) 

Tfinal, Pfinal 

(m-2)A 

(n-1)B 

AB2 

(m-1)A 

(n-2)B 

A2B (m-3)A 

(n-3)B AB2 

(m-x)A 

(n-y)B 

(xA-yB)soln 

Final equilibrium state? 
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Gibbs energy minimization 

(continued) 

 We have to find out which phase assemblage is most stable at given Tf  

    and Pf for a given mass balance (inputs). 

 Gibbs energy minimization routine. (ChemSage, Solgas-mix, etc.) 

    The most stable phase assemblage is the one with  the lowest Gibbs 

energy. 
 

In FactSage 

i) Input amounts 

ii) Select all possible product phases (solid compounds, solid 

solutions, liquid solutions, gases) 

iii) Set Tfinal and Pfinal 

iv) Calculation (Gibbs energy minimization routine) 

v) Equilibrium phase assemblage calculated 
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Ellingham diagrams 
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- Collection of ΔGo values for oxidation reactions 

mA + O2 = AmO2 (reference: 1 mol of O2) 

- Only consider pure compounds. 

  (No solutions are considered.) 
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Solution thermodynamics 

A-B solution, (Solid or liquid solution) 
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Solution thermodynamics 

A-B solution, (Solid or liquid solution) 

1. Ideal solution: 
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3. General solution: ),( Txf
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Solution thermodynamics 

A-B solution, (Solid or liquid solution) 
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* FactSage supports many complex solution models. 

Solution databases (FToxid, FTSalt, ....) contain optimized 

model parameters reproducing Gibbs energies of solutions.  

“Polynomial model”: 

A A A
a x



Ferrous Applications – Engineering Thermodynamics  14 

Gibbs Energy and Phase Diagrams 

 A phase diagram shows graphically the minimum Gibbs 

energy assemblages of a system. 

T1 

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)  
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Gibbs Energy and Phase Diagram 

 A phase diagram shows graphically the minimum Gibbs 

energy assemblages of a system. 

T2 

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)  
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Gibbs Energy and Phase Diagram 

 A phase diagram shows graphically the minimum Gibbs 

energy assemblages of a system. 

T3 

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)  
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Gibbs Energy and Phase Diagram 

 A phase diagram shows graphically the minimum Gibbs 

energy assemblages of a system. 

T4 

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)  
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Thermodynamic Database 

Development: FactSage  

Pure compounds 

Solution 

 Calorimetry 

 emf 

 Knudsen cell 

 Vapor pressure 

 emf (activity) 

 Knudsen cell (activity) 

 Vapor pressure (activity) 

 Solution calorimetry (enthalpy) 

 Phase diagrams 
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Dilute Solutions 

: Henry’s law 

0 xA 1 
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Constant slope 

Henrian activity coefficient 

* In FactSage, you cannot see the Henrian activity coefficient (in general, 

activity coefficient) value directly, but if you calculate the activity in the 

Equilib module in the very dilute composition region, you can calculate the 

Henrian activity coefficient using this relationship. 
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Dilute Solution 

Most refining processes involve impurity elements (dilute solutes) 

 Henrian activity is important  

For example, Al-deoxidation process in steelmaking, 
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Now, if we have other elements in Fe such as O, Mn, C, etc. 

there is interaction between Al and these elements. 

* FactSage FTmisc-FeLQ database contains these Henrian activity 

coefficients and interaction parameters for liquid steel. 
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Change of Standard State 
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Change of standard state is like 

temperature scales, K, oC (that is, just 

the zero point of lnai is changed). 

FactSage doesn’t provide standard state conversions. Users 

must do the conversions using the formulae above.  

i (w t.% ) i
a = f [ w t% i]



Ferrous Applications – Engineering Thermodynamics  22 

No direct way to do this type of calculation in FactSage.  

In FactSage,                    (between pure species) can be calculated 

from the Reaction module, and the activity of each solution species in 

the reactants or products can be calculated using the Equilib module. 

Then, using the above formula, we can calculate 

Gibbs energy of reaction 

i
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ii
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reactantsiiproductsiireaction
gngnG )()(  

Activity of i 
Standard state should be checked carefully 

o

reaction
G

When the reactants or products are 

- Pure species (not in a solution): activity = 1 

- Species in solution: requires an activity value (can be calculated from FactSage) 

reaction
G
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Heat evolution calculation 
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CP(s) 

CP(l) 

Hm (melting) 

process 
H initial 

H final 

H = H final - H initial =  
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A(s) 
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process 

Hf = heat of formation (or reaction)  
 from A(s) + B(s) to AB(s) 
 (typically negative value) 

Heat evolution calculation 

Hf 

Negative H means 

“generation of heat”  
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In FactSage, the H initial and H final are directly calculated because the H of each phase is 
calculated from the thermodynamic equations (database) of each solid or liquid phase. 
It is important to select proper initial  and final materials states and temperatures 

Heat evolution calculation 
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A-B solution  
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• Many industrial processes require mass and heat balance 
calculations. FactSage can provide a very easy way to do such 
calculations. For example, the following calculation would take 
several hours or days (or more) manually, but it takes less than 
1 minute with the FactSage Equilib module. 

Heat evolution calculation 

Fe-Mn-Si melt 
(1600oC) 

CaCO3  
(25oC) 

Fe-C ingot 
(500oC) 

Heat 
loss 

Final products 

temperature 

pressure  


